1) IEC(国际电工委员会)是一个由所有国家电工委员会(IEC 国家委员会)组成的全球标准化组织。IEC 的目标是促进电气和电子领域标准化所有问题的国际合作。为此,除其他活动外,IEC 还发布国际标准。它们的准备工作委托给技术委员会;任何对所涉及主题感兴趣的 IEC 国家委员会均可参与此项准备工作。与 IEC 联络的国际、政府和非政府组织也参与了此项准备工作。IEC 根据两个组织之间协议确定的条件与国际标准化组织 (ISO) 密切合作。
摘要 — 大多数电路板都在可能暴露于蒸汽或液体湿气的环境中工作。由于低成本电路板很容易吸收水分,这会导致性能问题、可靠性问题,甚至灾难性故障。然而,在电路板完全失效之前很难检测出是否发生了吸湿。为了缓解这个问题,在印刷电路板 (PCB) 技术中实现了一种边缘场电容器,并通过随之而来的电容增加来检测电路板中的吸湿情况。制造了原型传感器并浸泡了 42 天,结果显示电容增加了 14% 到 29%。这种传感器技术可以轻松添加到电路板设计中,因为它们使用了商用 PCB 构造中使用的标准材料和制造工艺。
用于在 PWB 中嵌入电容器的材料 Kazunori Yamamoto、Yasushi Shimada、Yasushi Kumashiro 和 Yoshitaka Hirata 日立化学株式会社 日本茨城县下馆 摘要 我们开发了一种名为 MCF-HD-45 的新型树脂涂层箔 (RCF) 材料,可嵌入 PWB 中构成电容器。该材料由热固性树脂和高介电常数 (Dk) 填料组成。填料具有多峰尺寸分布以实现高负载;特定的表面活性剂对于保持填料在清漆中的分散稳定性也至关重要。这些技术使这种材料具有 45 的高 Dk 和出色的可靠性。本文介绍了该材料应用于手机功率放大器模块和低通滤波器的测试结果,以及数据库对高频电路仿真的好处。简介 近年来,手机等无线设备的性能大大提高,尺寸也减小了。这种趋势推动了 RF 模块小型化技术的发展。以前,人们采用较小的半导体和无源器件来实现这一目的。然而,为了进一步减小尺寸,人们正在积极研究在 PWB 中嵌入无源和有源器件的技术。关于使用低温共烧陶瓷 (LTCC) 或硅作为基板的嵌入式无源器件的报道很多。如今,人们正在积极研究将有机基板用作此目的的基板,1-5 因为它们的热膨胀系数 (CTE) 与主板相匹配,并且易于扩大基板尺寸。如果现有的有机基板制造工艺适合嵌入无源器件,它们将具有巨大的成本效益优势。如今,模拟技术对于 RF 模块的电路设计非常重要。然而,适用于 PWB 中嵌入式无源器件的电路设计的数据库很少。电路设计师、PWB 制造商和材料供应商之间的合作将是必要的,以激活嵌入式无源技术。实验部分以改性环氧树脂为高分子材料,以Dk=1500的钛酸钡(BaTiO 3)为高Dk填料,选择适当的溶剂将各组份材料配成清漆,用砂磨机混合制成均质清漆,并添加一些表面活性剂或分散剂。然后将清漆涂在典型的铜箔(3/8盎司)上,采用标准涂覆技术,得到名为MCF-HD-45的新型RCF。在此过程中,绝缘层厚度控制在20μm左右。用于可靠性测试等的试样采用传统的层压工艺制作,即在180 OC下2.5 MPa压力下放置60分钟。然后在以下条件下进行可靠性测试:85 OC/85%RH/6 V dc。电路仿真采用安捷伦科技公司的先进设计系统 (ADS) 进行。采用同一制造商的矢量网络分析仪 (VNA) 测量材料及其应用的高频特性,该分析仪配备探针台以控制台面温度。结果与讨论图 1 显示了嵌入 PWB 中的无源元件的概念。由夹在两个电极(例如铜箔)之间的聚合物复合材料制成的厚膜电容器、由薄膜和两个电极制成的薄膜电容器以及通过在基板上图案化制成的电感器可用作嵌入 PWB 中的无源元件。
西门子股份公司 德国慕尼黑 摘要 在 SMT 领域,元件越来越小、功能越来越密集的趋势有增无减。制造商和用户必须日益协调他们的活动,以开发可用且经济高效的解决方案。进步永无止境,尤其是在电子领域。电子产品用于各种各样的应用。越来越多的功能被塞进越来越小的模块中。为了应对从 SMD 技术到微电子领域的这些挑战,仅仅将元件做得更小已经不够了。相反,工程师必须分析材料之间的相互作用,并在制造过程中考虑到它们。为了实现良好的可制造性,应该咨询所有各方,从设计师开始,PCB 制造商、印刷机、模板和焊膏制造商,以及拾放设备制造商和回流专家。只有共同努力才能确保良好的质量。简介 01005 元件的尺寸为 0.2 mm x 0.4 mm,对装配序列中的所有工艺都提出了挑战。它们几乎是看不见的,至少对于“肉眼”来说是这样,而且重量极轻(0.04 毫克)。考虑到这些事实,很容易理解整个组装过程,但更重要的是,PCB 的材料和布局必须针对这些组件的使用进行设计。
摘要 — 高密度互连 (HDI) 印刷电路板 (PCB) 和相关组件对于使太空项目受益于现代集成电路(如现场可编程门阵列、数字信号处理器和应用处理器)日益增加的复杂性和功能性至关重要。对功能性的不断增长的需求意味着更高的信号速度和越来越多的输入/输出 (I/O) 数量。为了限制整体封装尺寸,元件的触点焊盘间距会减小。大量 I/O 与减小的间距相结合对 PCB 提出了额外的要求,需要使用激光钻孔微孔、高纵横比核心过孔以及小的轨道宽度和间距。虽然相关的先进制造工艺已广泛应用于商业、汽车、医疗和军事应用,但将这些性能的进步与太空的可靠性要求相协调仍然是一个挑战。考虑了两种类型的 HDI 技术:两级交错微孔(基本 HDI)和(最多)三级堆叠微孔(复杂 HDI)。本文介绍了根据 ECSS-Q-ST-70-60C 对基本 HDI 技术的鉴定。在 1.0 毫米间距下,该技术成功通过了所有测试。在 0.8 毫米间距下,互连应力测试和导电阳极丝测试期间会遇到故障。这些故障为更新 HDI PCB 的设计规则提供了基础。
摘要 高密度互连 (HDI) 印刷电路板 (PCB) 和相关组件对于使太空项目受益于现代集成电路(如现场可编程门阵列 (FPGA)、数字信号处理器 (DSP) 和应用处理器)日益增加的复杂性和功能性至关重要。对功能的不断增长的需求转化为更高的信号速度和越来越多的 I/O。为了限制整体封装尺寸,组件的接触焊盘间距会减小。大量 I/O 与减小的间距相结合对 PCB 提出了额外的要求,需要使用激光钻孔微孔、高纵横比核心通孔和小轨道宽度和间距。虽然相关的先进制造工艺已广泛应用于商业、汽车、医疗和军事应用;但将这些能力的进步与太空的可靠性要求相协调仍然是一个挑战。考虑了两类 HDI 技术:两级交错微孔(基本 HDI)和(最多)三级堆叠微孔(复杂 HDI)。本文介绍了按照 ECSS-Q-ST-70-60C 对基本 HDI 技术的鉴定。在 1.0 mm 间距时,该技术成功通过了所有测试。在 0.8 mm 间距时,在互连应力测试 (IST) 和导电阳极丝 (CAF) 测试中会遇到故障。这些故障为更新 HDI PCB 的设计规则提供了基础。简介通常认为 HDI PCB 有两个主要驱动因素:(1) 关键元件的小间距和高 I/O 数量;(2) 这些元件的性能不断提高,导致电路板上的信号线速度加快。微孔的使用可以缩短信号路径的长度,从而提高信号完整性和电源完整性。由于扇出内的密集布线,关键网络可能会受到串扰。在 1.0 mm 间距元件的引脚之间布线差分对需要精细的线宽和间距。0.8 mm 间距元件的埋孔之间不再可能进行差分对布线。需要在扇出区域内分割线对,分割长度决定了分割对对信号完整性的影响。单端网络宽度的变化以及差分对间距和/或走线宽度的变化将导致阻抗不连续。因此,选择合适的层结构和过孔类型将同时改善布线能力和信号完整性。在定义 HDI PCB 技术参数时,一个重要的考虑因素是元件间距和 I/O 数量不能独立处理。间距为 1.0 mm 的高引脚数元件(> 1000 引脚)可能需要使用微过孔来减少总层数或改善受控阻抗线的屏蔽。另一方面,仅具有两排焊球的 0.5 mm 间距元件的逃逸布线可在不使用微孔和细线宽和间距的情况下进行。增加层数以便能够布线一个或多个高引脚数元件将导致 PCB 厚度增加,这会通过限制通孔纵横比影响最小通孔钻孔直径,从而再次限制布线可能性。为了定义 HDI 技术参数,需要了解过去、现在和未来太空项目中使用的面阵器件 (AAD) 的规格。纵观目前正在开发的复杂太空元件,间距为 1.0 mm 的陶瓷柱栅阵列 (CCGA) 仍将是未来几年的首选封装。例如,新的 Xilinx FPGA (RT-ZU19EG: CCGA1752) [1]、CNES VT65 电信 ASIC (CCGA1752) [2] 和欧洲航天局 (ESA) 的下一代微处理器 (NGMP, CCGA625) [3] 就是这种情况。间距较小的柱状网格阵列 (0.8 毫米) 已在研发中得到展示 [4],尽管尚未发现商业实现。带有非塌陷高铅焊球的陶瓷球栅阵列 (CBGA) 用于军事和航空航天应用 [5]。当间距为 0.8 毫米及以上 (0.5 毫米) 时,陶瓷 (即密封) 封装会成为可靠性风险,因为更小的间距 (0.8 毫米) 会降低封装的可靠性。
Karl Brakora 是大峡谷州立大学的助理教授,也是 BT 工程公司的工程师。他曾研究过电路板的共形气相沉积 EMI/HPM 屏蔽、HEMP/HPM 的轻型复合飞机外壳以及非 GPS 定位系统和技术。此前,他于 2007 年至 2014 年担任密歇根州安娜堡 EMAG Technologies Inc. 的首席射频工程师。在那里,他致力于开发紧凑、低成本相控阵、超音速和高超音速弹药雷达指令制导的高速信号采集和处理以及先进的 PCB 封装技术领域的创新技术。此前,他是密歇根大学辐射实验室的研究生,他的研究重点是陶瓷原型技术、集成陶瓷微波系统以及超材料和光子晶体的应用。他为同行评审期刊撰写了四篇论文,并多次在会议上发表关于先进陶瓷制造技术在微波设备中的应用的演讲。 Brakora 博士拥有 5 项美国专利,并有多项未公开的专利和专利申请。
图 3. A) 松香油的参考光谱(红色,顶部)及其库匹配(绿色,底部);B) 两个位置的图像,有明显不一致之处;C) 化学图表示收集的光谱与松香油的参考光谱之间的相似性。(红色高相关性和蓝色低相关性)