图 4:a) Ge 15 Te 85 玻璃在 105 °C 下退火一段时间后进行的电阻率上扫描测量得出的虚拟温度 𝑇𝑇 𝑓𝑓 𝜌𝜌 的演变。𝑇𝑇 𝑓𝑓 𝜌𝜌 数据与 TNM-AG 模型(黑线)精确拟合,并长时间向退火温度 105 °C 收敛,从而证实了稳定性。b) 将在 105 °C 恒温保持期间获得的电阻率数据(浅蓝色点)与从 𝑇𝑇 𝑓𝑓 𝜌𝜌(红色圆圈)和 TNM-AG 模型(黑线)计算出的电阻率值进行比较(a)。实验电阻率数据与玻璃松弛模型的预测结果非常吻合。请注意,初始 𝑇𝑇 𝑓𝑓 𝜌𝜌 低于图 2 所示的 𝑇𝑇 𝑓𝑓 𝐻𝐻。这是由于在 vdP 样品上沉积覆盖层期间向硫族化物引入了热量。
2。HS Gill,Ak Shakya,Ch Lee。 皮肤过敏原免疫疗法的微针。 美国化学工程师研究所(AICHE),2019年,美国奥兰多。 3。 Ak Shakya,Ch Lee和Hs Gill,“涂层的微针介导的过敏原特异性免疫疗法用于治疗小鼠气道过敏”,哺乳动物皮肤的屏障功能,戈登研究研讨会(GRS),2019年,2019年,美国新罕布什尔州沃特维尔谷。 4。 Ak Shakya,Ch Lee,HS Gill。 过敏原免疫疗法的微针:气道过敏的小鼠模型中的体内功效。 美国化学工程师研究所(AICHE),2018年,美国匹兹堡。 5。 Ak Shakya,Ch Lee,HS Gill。 微针的皮肤免疫疗法用于过敏。 国际疫苗学会2016年,美国波士顿。 6。 Ak Shakya,Ch Lee,HS Gill。 涂有过敏原的微甲烷作为预防过敏免疫疗法的新方法。 生物医学工程协会2016年会议,美国明尼阿波利斯,美国。 7。 Ak Shakya,HS Gill。 过敏原涂层的微针作为哮喘预防性免疫疗法的新方法。 2015年受控发行协会年度会议,苏格兰爱丁堡。 8。 Ak Shakya,HS Gill。 使用涂层微针的皮肤过敏原特异性免疫疗法。 皮肤疫苗接种峰会2015年,瑞士。 9。 m gatica,HS Gill,Ak Shakya。 通过微针递送椭圆蛋白,以防止小鼠的卵过敏。 SACNAS全国会议,2014年,美国洛杉矶。 10。HS Gill,Ak Shakya,Ch Lee。皮肤过敏原免疫疗法的微针。美国化学工程师研究所(AICHE),2019年,美国奥兰多。3。Ak Shakya,Ch Lee和Hs Gill,“涂层的微针介导的过敏原特异性免疫疗法用于治疗小鼠气道过敏”,哺乳动物皮肤的屏障功能,戈登研究研讨会(GRS),2019年,2019年,美国新罕布什尔州沃特维尔谷。4。Ak Shakya,Ch Lee,HS Gill。过敏原免疫疗法的微针:气道过敏的小鼠模型中的体内功效。美国化学工程师研究所(AICHE),2018年,美国匹兹堡。5。Ak Shakya,Ch Lee,HS Gill。微针的皮肤免疫疗法用于过敏。国际疫苗学会2016年,美国波士顿。 6。 Ak Shakya,Ch Lee,HS Gill。 涂有过敏原的微甲烷作为预防过敏免疫疗法的新方法。 生物医学工程协会2016年会议,美国明尼阿波利斯,美国。 7。 Ak Shakya,HS Gill。 过敏原涂层的微针作为哮喘预防性免疫疗法的新方法。 2015年受控发行协会年度会议,苏格兰爱丁堡。 8。 Ak Shakya,HS Gill。 使用涂层微针的皮肤过敏原特异性免疫疗法。 皮肤疫苗接种峰会2015年,瑞士。 9。 m gatica,HS Gill,Ak Shakya。 通过微针递送椭圆蛋白,以防止小鼠的卵过敏。 SACNAS全国会议,2014年,美国洛杉矶。 10。国际疫苗学会2016年,美国波士顿。6。Ak Shakya,Ch Lee,HS Gill。涂有过敏原的微甲烷作为预防过敏免疫疗法的新方法。生物医学工程协会2016年会议,美国明尼阿波利斯,美国。 7。 Ak Shakya,HS Gill。 过敏原涂层的微针作为哮喘预防性免疫疗法的新方法。 2015年受控发行协会年度会议,苏格兰爱丁堡。 8。 Ak Shakya,HS Gill。 使用涂层微针的皮肤过敏原特异性免疫疗法。 皮肤疫苗接种峰会2015年,瑞士。 9。 m gatica,HS Gill,Ak Shakya。 通过微针递送椭圆蛋白,以防止小鼠的卵过敏。 SACNAS全国会议,2014年,美国洛杉矶。 10。生物医学工程协会2016年会议,美国明尼阿波利斯,美国。7。Ak Shakya,HS Gill。 过敏原涂层的微针作为哮喘预防性免疫疗法的新方法。 2015年受控发行协会年度会议,苏格兰爱丁堡。 8。 Ak Shakya,HS Gill。 使用涂层微针的皮肤过敏原特异性免疫疗法。 皮肤疫苗接种峰会2015年,瑞士。 9。 m gatica,HS Gill,Ak Shakya。 通过微针递送椭圆蛋白,以防止小鼠的卵过敏。 SACNAS全国会议,2014年,美国洛杉矶。 10。Ak Shakya,HS Gill。过敏原涂层的微针作为哮喘预防性免疫疗法的新方法。2015年受控发行协会年度会议,苏格兰爱丁堡。8。Ak Shakya,HS Gill。 使用涂层微针的皮肤过敏原特异性免疫疗法。 皮肤疫苗接种峰会2015年,瑞士。 9。 m gatica,HS Gill,Ak Shakya。 通过微针递送椭圆蛋白,以防止小鼠的卵过敏。 SACNAS全国会议,2014年,美国洛杉矶。 10。Ak Shakya,HS Gill。使用涂层微针的皮肤过敏原特异性免疫疗法。皮肤疫苗接种峰会2015年,瑞士。9。m gatica,HS Gill,Ak Shakya。通过微针递送椭圆蛋白,以防止小鼠的卵过敏。SACNAS全国会议,2014年,美国洛杉矶。 10。SACNAS全国会议,2014年,美国洛杉矶。10。Ak Shakya,kumar,KS Nandakumar。聚-N-异丙丙烯酰胺作为胶原蛋白诱导关节炎的辅助。第4届印度 - 澳大利亚会议“生物材料,组织工程和药物输送系统”,2011年,印度古吉拉特邦。 11。 srivastava,ak shakya,a kumar。 使用冷冻凝胶的细胞和生物分子的硼酸盐亲和力色谱法。 第4届印度 - 澳大利亚会议“生物材料,组织工程和药物输送系统”,2011年,印度古吉拉特邦。 12。 Ak Shakya,kumar,KS Nandakumar。 热响应性聚-N-异丙丙烯酰胺作为实验性类风湿关节炎中的辅助。 年度会议与博览会生物材料学会2011年,美国奥兰多,美国。 13。 srivastava,ak shakya,a kumar。 基于组织工程应用的基于聚(N-乙烯基caprolactam)的冷冻凝胶支架:合成和生物物理表征。 年度会议与博览会,2010年生物材料学会,美国西雅图,美国西雅图,美国。第4届印度 - 澳大利亚会议“生物材料,组织工程和药物输送系统”,2011年,印度古吉拉特邦。11。srivastava,ak shakya,a kumar。使用冷冻凝胶的细胞和生物分子的硼酸盐亲和力色谱法。第4届印度 - 澳大利亚会议“生物材料,组织工程和药物输送系统”,2011年,印度古吉拉特邦。 12。 Ak Shakya,kumar,KS Nandakumar。 热响应性聚-N-异丙丙烯酰胺作为实验性类风湿关节炎中的辅助。 年度会议与博览会生物材料学会2011年,美国奥兰多,美国。 13。 srivastava,ak shakya,a kumar。 基于组织工程应用的基于聚(N-乙烯基caprolactam)的冷冻凝胶支架:合成和生物物理表征。 年度会议与博览会,2010年生物材料学会,美国西雅图,美国西雅图,美国。第4届印度 - 澳大利亚会议“生物材料,组织工程和药物输送系统”,2011年,印度古吉拉特邦。12。Ak Shakya,kumar,KS Nandakumar。热响应性聚-N-异丙丙烯酰胺作为实验性类风湿关节炎中的辅助。年度会议与博览会生物材料学会2011年,美国奥兰多,美国。13。srivastava,ak shakya,a kumar。基于组织工程应用的基于聚(N-乙烯基caprolactam)的冷冻凝胶支架:合成和生物物理表征。年度会议与博览会,2010年生物材料学会,美国西雅图,美国西雅图,美国。
1977 年 8 月 31 日和 9 月 1-2 日的检查(报告编号 50-433/77-07) 检查区域:观察混凝土的放置情况并审查相关记录;审查 HVAC 安全相关部件的程序并观察储存保护和保存情况;以及对以前检查中发现的不合规项目和未解决问题进行后续审查。三名 NRC 检查员在现场进行了 75 个检查员小时的检查。结果:在检查的三个区域中,一项明显不合规项目
近年来,可再生能源渗透率的提高造成了新的拥堵模式。由于电网不是为新模式设计的,运营商可能需要削减可再生能源,以将传输流量保持在可接受的范围内。使用灵活交流输电系统 (FACTS) 设备的输电线路阻抗控制已被提议作为一种缓解输电系统拥堵和提高可再生能源利用率的方法。在本文中,我们进行了一项全面的研究,以深入了解 FACTS 实施对可再生能源整合和碳减排的影响。该研究考虑了可再生能源渗透率、系统负载模式、可再生能源发电位置和 FACTS 设备位置的变化。此外,还使用了来自著名区域输电组织 (RTO) 的发电组合数据来获得更现实的结果。对具有两阶段随机机组组合模型的改进型 RTS-96 系统进行了模拟研究。结果表明,尽管阻抗控制在降低成本方面是有效的,但它在促进具有著名廉价化石燃料发电厂的系统中可再生能源整合方面存在局限性。
如今,尤其是对于便携式设备而言,低功耗是延长电池寿命的基本约束。在这种情况下,传统电路无法满足要求。需要重新设计采用较低技术的电路,使其在减少供电的情况下也能正常工作,这是设计师的主要关注点。虽然规模化技术有助于通过要求低供电来降低功耗,但同时,如果设计是模拟的,二阶效应就会变得突出。在数字中,这种影响不会使性能下降太多。在任何 IC 中,性能都由用于构建它的组件决定。如果 IC 中使用的子块消耗的功率较低,则意味着整个系统的性能会更好。对于模拟 IC,电流镜是广泛用于大多数电路的基本块之一。电流镜的理想特性包括大动态范围、宽带宽、低输入电阻和高输出电阻。然而,在纳米技术中,
由于其电导率的微调,这些聚合物已成为设计微电子局部电活性模式的一种替代方案。 [12,13] 在这种情况下,通常使用不同的制造技术,例如注射打印、光热图案化、3D 打印和压印,以及电子束或紫外光刻,[14–21] 例如,在聚吡咯和聚(3,4-乙烯二氧噻吩)/聚苯乙烯磺酸盐基底上产生明确的导电图案。 [16,20] 然而,人们非常需要用于导电基底局部图案化的低成本和直接的方法。 在这种情况下,双极电化学 (BE) 被认为是一种有趣的替代方法,用于局部改性导电物体。 [22–27] 该概念基于由于外部电场 (ε) 的存在而导致的导电基底的不对称极化。在这种条件下,在暴露于电解质溶液中的ε 的物体双极电极 (BPE) 的每个末端都会产生极化电位差 (ΔV)。在存在电活性物质的情况下,仅当ΔV 超过热力学阈值电位 (ΔVmin) 时,BPE 的两端才会发生氧化还原反应。这一概念已用于不对称生成图案化梯度,范围从材料的化学组成到润湿性。[28–33] 近年来,该方法还被用于通过双极电解胶束破坏或电接枝来产生有机薄膜梯度。[34–36] 一种有前途的替代方法是利用导电聚合物有效的绝缘体/导体转变来产生不对称的充电/放电梯度。[37] 例如,Inagi 等人。已经利用这一概念,使用 U 型双极电化学电池在不同的 π 共轭聚合物(如聚苯胺、聚-3,4-二氧噻吩、聚-3-甲基噻吩和共聚(9-芴醇)-(9,9-二辛基芴))中诱导导电模式。[38–41] 此外,已经证明,通过使用复杂的双极电化学装置,可以产生陡峭的局部掺杂梯度。[42] 在此,我们利用双极电化学方法,在掺杂有十二烷基苯磺酸根阴离子(DBS)的柔性独立聚吡咯条(Ppy)上产生局部电阻梯度。之前已有报道通过双极电化学对导电聚合物进行不对称改性,但主要集中在光学跃迁(颜色变化)上。由于对于导电聚合物,电导率
化学计量体积LUH 2是一种顺磁金属,具有与简单金属相当的高电导率。在这里我们表明,通过磨削过程(即,由商业购买的LuH 2粉末制成的CP颗粒)在粒度或表面条件下修改晶粒尺寸或表面条件的敏感性变化,其较高金属粉仍然是金属的,但仍表现出数千倍的电阻性,而较高的电阻率则越来越多,而较高的电阻却增强了较高的势力,而又一次的势力又增强了空中的增强性,并且又增强了空中的增强性。对于这些CP样品,有趣的是,我们有时可以在高温下观察到突然的电阻率下降,这也显示出对磁场和电流的依赖。可变温度XRD,磁敏感性和比热的测量不包括观察到的电阻率下降的结构,磁性和超导转换的可能性。相反,由于氢化计量学的修饰或氧气/氮的污染,我们暂时将上述观察结果归因于晶体表面上的绝缘层的存在。金属晶粒通过绝缘表面的渗透可以解释电阻率的突然下降。因此,目前的结果要求谨慎地认为电阻率下降是超导性的,并使背景减法无效分析电阻率数据。
© 作者 2023,更正出版物 2023。开放获取。本文根据知识共享署名 4.0 国际许可获得许可,允许以任何媒体或格式使用、共享、改编、分发和复制,只要您给予原作者和来源适当的信用,提供知识共享许可的链接,并指明是否进行了更改。本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不被法定法规允许或超出允许用途,则您需要直接从版权所有者处获得许可。要查看此许可证的副本,请访问 http://creativecommons.org/licenses/by/4.0/。
第二章 相关文献综述 ...................................................................................................... 8 身高体重表 ...................................................................................................................... 8 预测方程 ...................................................................................................................... 11 体质测量 ...................................................................................................................... 16 腰臀比 ...................................................................................................................... 20 体内水分总量 ...................................................................................................................... 25 身体质量指数 ...................................................................................................................... 31 生物电阻抗 ...................................................................................................................... 41 近红外 ............................................................................................................................. 62 皮褶厚度 ............................................................................................................................. 77 水下称重 ............................................................................................................................. 88
摘要 —本文介绍了一种由工作在亚阈值区域的串联 PMOS 器件组成的新策略和电路配置,用于实现极低频有源 RC 滤波器和生物放大器所需的超高值电阻器。根据应用不同,例如生物放大器中的信号带宽可能从几 mHz 到最高 10 kHz 不等。提出了三种不同的电阻结构来实现超高阻值。虽然提出的超高阻值伪电阻器的阻值在几 T Ω 的数量级,但它们占用的片上硅片面积很小,这是超低功耗可植入生物医学微系统中模拟前端电路设计的主要问题之一。此外,这些超高阻值电阻器导致使用小电容来产生非常小的截止频率。因此,实现电容所需的大面积也大大减少。所提出的电阻结构在宽输入电压范围(-0.5 V~+0.5 V)内变化很小,约为7%和12%,从而显著改善了生物放大器的总谐波失真和系统的模拟前端。在180nm CMOS工艺中设计的不同电路的仿真结果证明了所提出的超高阻值伪电阻的优势。