业界正在研究电阻式存储器件,尤其是那些基于可溶液处理、化学变化且成本低廉的有机材料的器件。在本文中,我们通过在 ITO 基板上旋涂一层有机的钌 (II) 薄层来制造电阻式存储器件。制造的电阻式存储器件利用通过旋涂沉积在 ITO 基板上的钌 (II) 薄层,表现出低电阻和高电阻导电状态。这些特性使它们非常适合电阻式随机存取存储器 (RRAM) 应用。RRAM 因其高可扩展性、快速切换速度和低功耗而成为一种很有前途的非易失性存储器技术。通过利用低电阻和高电阻状态,电阻式存储器件可以有效地存储二进制数据,为各种基于存储器的系统提供潜在应用,包括固态硬盘、嵌入式系统和物联网 (IoT) 设备。有机钌 (II) 薄层的使用为探索电阻式存储器器件的性能和稳定性提供了一种新途径,为 RRAM 技术的进一步发展铺平了道路。” 使用扫描电子显微镜 (SEM)、X 射线衍射 (XRD) 和能量色散 X 射线光谱 (EDX) 来表征该器件。还获得了这些器件的电流-电压特性。测量了低电阻和高电阻传导状态,发现它们非常适合电阻式随机存取存储器应用。此外,我们观察到随着有机层厚度的增加,开关得到改善,因此电阻比提高了 10 倍。 (2022 年 12 月 19 日收到;2023 年 8 月 7 日接受) 关键词:钌、开关、器件、电性能
摘要 较大的朗道能级间距源于石墨烯中准粒子的线性能量动量色散,这使得在较小的电荷载流子密度下可以有效实现量子霍尔效应。然而,在碳化硅 (SiC) 上具有发展前景的可扩展外延石墨烯需要分子掺杂,而分子掺杂在环境条件下通常是不稳定的,以补偿来自 SiC 衬底的电子转移。在这里,我们采用了有机电子器件中常见的经典玻璃封装,以使分子掺杂的外延石墨烯对空气中的水和氧分子钝化。我们已经研究了玻璃封装设备中霍尔量子化的稳定性近 1 年。经过近一年的多次热循环,霍尔量子化保持在阈值磁场之上,小于 3.5 n Ω Ω − 1 的测量不确定度,而普通未封装的器件在空气中放置 1 个月后明显显示出与标称量子化霍尔电阻的相对偏差大于 0.05%。
基于电阻开关存储器(也称为忆阻器或 RRAM)的新型计算架构已被证明是解决深度学习和脉冲神经网络能源效率低下问题的有前途的方法。然而,电阻开关技术尚不成熟,存在许多缺陷,这些缺陷通常被认为是人工神经网络实现的限制。尽管如此,可以利用合理的可变性来实现高效的概率或近似计算。这种方法可以提高稳健性、减少过度拟合并降低特定应用(如贝叶斯和脉冲神经网络)的能耗。因此,如果我们将机器学习方法适应电阻开关存储器的固有特性,某些非理想性可能会成为机会。在这篇简短的评论中,我们介绍了电路设计的一些关键考虑因素和最常见的非理想性。我们通过成熟的软件方法示例说明了随机性和压缩的可能好处。然后,我们概述了利用电阻开关存储器的缺陷的最新神经网络实现,并讨论了这些方法的潜力和局限性。
完整作者列表: Athena, Fabia Farlin;佐治亚理工学院工程学院、电气与计算机工程 West, Matthew;佐治亚理工学院、材料科学与工程学院 Hah, Jinho;佐治亚理工学院工程学院、材料科学与工程学院;佐治亚理工学院 Hanus, Riley;佐治亚理工学院工程学院、3George W. Woodruff 机械工程学院,佐治亚理工学院,佐治亚州亚特兰大 30332,美国 Graham, Samuel;佐治亚理工学院工程学院、George W. Woodruff 机械工程学院,佐治亚理工学院,佐治亚州亚特兰大 30332,美国 Vogel, Eric;佐治亚理工学院、材料科学与工程学院
基于电阻开关存储器(也称为忆阻器或 RRAM)的新型计算架构已被证明是解决深度学习和脉冲神经网络能源效率低下问题的有前途的方法。然而,电阻开关技术尚不成熟,存在许多缺陷,这些缺陷通常被认为是人工神经网络实现的限制。尽管如此,可以利用合理的可变性来实现高效的概率或近似计算。这种方法可以提高稳健性、减少过度拟合并降低特定应用(如贝叶斯和脉冲神经网络)的能耗。因此,如果我们将机器学习方法适应电阻开关存储器的固有特性,某些非理想性可能会成为机会。在这篇简短的评论中,我们介绍了电路设计的一些关键考虑因素和最常见的非理想性。我们通过成熟的软件方法示例说明了随机性和压缩的可能好处。然后,我们概述了利用电阻开关存储器的缺陷的最新神经网络实现,并讨论了这些方法的潜力和局限性。
摘要:提议三维垂直电阻随机访问记忆(VRRAM)作为增加电阻存储器存储密度的有前途的候选者,但是3-D VRRAM阵列的性能评估机制仍然不够成熟。先前评估3-D VRRAM性能的方法是基于写入和读取余量的。但是,3-D VRRAM阵列的泄漏电流(LC)也是一个问题。多余的泄漏电流不仅降低了记忆单元的读/写公差和责任,还可以增加整个数组的功耗。在本文中,使用3-D电路HSPICE模拟来分析3-D VRRAM体系结构中阵列大小和操作电压对泄漏电流的影响。模拟结果表明,迅速增加泄漏电流显着影响3-D层的尺寸。高读取电压是提高读取余量的预告仪。但是,泄漏电流也增加。减轻这一冲突需要在设置输入电压时进行权衡。通过分析多位操作对整体泄漏电流的影响,提出了提高阵列读/写入效率的方法。最后,本文探讨了减少3-D VRRAM阵列中泄漏电流的不同方法。本文提出的泄漏电流模型为3-D VRRAM阵列的初始设计提供了有效的性能预测解决方案。
摘要 — 在本信中,我们介绍了一种适用于高速采样系统的基于磷化铟 (InP) 双异质结双极晶体管 (DHBT) 技术的 24 GSa/s、> 20 GHz 宽带跟踪保持放大器 (THA)。在所提出的方法中,输入级的输出极点被发射极电容/电阻衰减产生的零点抵消,从而扩展了带宽而没有压降。引入了输出级 V be 调制补偿技术以减少失真。单片微波集成电路 (MMIC) 原型仅占用 0.69 mm 2 ,实验结果表明它具有从直流到 22.3 GHz 的 0.112–f T 带宽,比使用 InP 技术的任何报道的紧凑型 THA 解决方案都要宽。此外,在 24 GSa/s 采样率下,无杂散动态范围 (SFDR) 优于 42 dB,总谐波失真 (THD) 小于 − 25 dBc。THA 功耗仅为 374 mW,是 InP 技术中报告的最低直流功耗之一。
摘要 较大的朗道能级间距源于石墨烯中准粒子的线性能量动量色散,它允许在较小的载流子密度下有效实现量子霍尔效应。然而,在碳化硅 (SiC) 上要实现有前景的可扩展外延石墨烯,需要分子掺杂来补偿来自 SiC 基底的电子转移,而分子掺杂在环境条件下通常不稳定。在这里,我们采用有机电子器件中常见的经典玻璃封装来钝化分子掺杂外延石墨烯以抵抗空气中的水和氧分子。我们研究了玻璃封装设备中霍尔量子化的稳定性,为期近 1 年。在近 1 年的多次热循环中,霍尔量子化保持在阈值磁场之上,在 2 n ΩΩ − 1 以内,小于 3.5 n ΩΩ − 1 的测量不确定度,而普通的未封装设备在空气中放置 1 个月后明显显示出与标称量化霍尔电阻的相对偏差大于 0.05%。
摘要 较大的朗道能级间距源于石墨烯中准粒子的线性能量动量色散,它允许在较小的载流子密度下有效实现量子霍尔效应。然而,在碳化硅 (SiC) 上要实现有前景的可扩展外延石墨烯,需要分子掺杂来补偿来自 SiC 基底的电子转移,而分子掺杂在环境条件下通常不稳定。在这里,我们采用有机电子器件中常见的经典玻璃封装来钝化分子掺杂外延石墨烯以抵抗空气中的水和氧分子。我们研究了玻璃封装设备中霍尔量子化的稳定性,为期近 1 年。在近 1 年的多次热循环中,霍尔量子化保持在阈值磁场之上,在 2 n ΩΩ − 1 以内,小于 3.5 n ΩΩ − 1 的测量不确定度,而普通的未封装设备在空气中放置 1 个月后明显显示出与标称量化霍尔电阻的相对偏差大于 0.05%。
集成串行译码电路 集成 8 高效 PMOS 输出 , 导通电阻 100mΩ 集成内部防烧功率管 动态消影技术 反向击穿保护 支持最大持续电流 2.5A 低功耗设计 消影电位 8 档可调 封装形式: SOP16 广泛应用领域: LED 显示屏、 LED 照明、 LED 景观亮化