分析儿童和青少年糖尿病的身体成分变得越来越流行。已经证明,监测重量生长或损失的干预措施,以确保有机体的发展和计划措施以防止成人疾病的疾病都可以从儿童期间对营养状况的评估中受益。先前的研究表明,患有1型糖尿病的患者经常经历称为糖尿病性酮症酸中毒的紧急情况[4],通常不是肥胖。1型糖尿病(T1D)中的肥胖症历史并不常见,现在正成为一个更普遍的问题[5,6]。一生,很大一部分T1D患者会出现肥胖。近年来,这种情况更为普遍,患病率在2.8%至37.1%之间[7]。
大于 0.1 m,无论是平面化还是未平面化的测试 µ 芯片。凸块侧壁略微倾斜,因此凸块的平面化会略微增加凸块面积,见表 2。平面化工艺似乎还会使软金凸块略微变脏,见图 4。平面化凸块的凸块面积比未平面化凸块大 5% 到 15%。
b'composites,[14 \ xe2 \ x80 \ x9316]聚合物粘合剂,[17 \ xe2 \ x80 \ x9319]和添加剂[19,20],以改善Li-Cells中的Si-Electrode性能。涉及硅阳极中的金属碳化物是尚未探讨增加容量和循环寿命的另一种策略。首先,据报道,具有特定微观结构的复合硅/wolfram碳化物@石墨烯可维持较高的初始库仑效率和长期循环寿命,从而减轻了结构变化。[21]相反,金属碳化物(mo 2 C,Cr 2 C 3等)以Si Cr 3 C 2的形式 @几层石墨烯和Si Mo 2 C @几层石墨烯电极的据报道,具有良好的电化学性能。[22]此外,碳化物通常还可以提供出色的导电骨架,以提高Si的电子电导率,这要归功于纳米导电通道的存在,从而降低了电子转移电阻。[23,24]'
综合超声和电阻抗断层扫描用于提高肾结石检测率 KR Farnham 1、EK Murphy 1 和 RJ Halter 1,2 1 塞耶工程学院,2 盖泽尔医学院,达特茅斯学院,新罕布什尔州汉诺威 引言 长期处于微重力环境中会导致脱水、淤滞和骨质脱矿,从而引发肾结石,对宇航员的健康和幸福构成严重威胁 [1]。尽早发现肾结石的形成是有益的,因为较小的结石更容易通过,而碎石术等非侵入性治疗需要先使用高对比度成像(如荧光透视、X 射线)定位结石。超声波是目前在太空中使用的成像系统,但仅用超声波检测小结石是一项具有挑战性的任务。执行深空任务的宇航员需要能够对肾结石等疾病进行成像和治疗,而无需依赖额外的造影剂或远程医疗支持,因为航天器的限制和距离使这些解决方案不可行 [2]。通过对生物电特性进行成像可以获得明显更高的对比度,因为这些特性对细胞内容、组织类型和病理很敏感,从而可以检测软组织内的结石。电阻抗断层扫描 (EIT) 是一种资源消耗少、非侵入性、非电离的技术,可产生这些电特性的图像,并能够检测一系列与空间相关的疾病(如肾结石、组织损伤、肌肉萎缩、胸腔功能、癌症存在) [3]。通过结合超声波和 EIT(US-EIT),我们可以构建高对比度图像,而无需额外的设备或专业知识,为宇航员提供一种易于使用的工具,以便在长期任务中有效监测他们的健康状况。
摘要 本研究研究了铜突起对连接电阻的影响,作为中通孔硅通孔 (TSV) 晶片混合键合的详细数据。在制备了多个具有不同铜突起量的 Cu TSV 晶片和 Cu 电极晶片并通过表面活化键合方法使用超薄 Si 膜进行键合后,通过四端测量评估了键合晶片的连接电阻(即 TSV、Cu 电极和界面电阻之和)。结果表明,Cu 突起量是中通孔 TSV 晶片与超薄 Si 膜混合键合的关键参数,通过调节 Cu 突起可以在不进行热处理的情况下实现 TSV 和 Cu 电极之间的电连接。关键词 中通孔 硅通孔(TSV) 直接Si/Cu研磨 混合键合I.引言 随着摩尔定律的放缓,带有硅通孔(TSV)[1-6]的三维集成电路(3D-IC)已经成为实现高速、超紧凑和高功能电子系统的可行解决方案。3D-IC在某些电子系统中的接受度越来越高。然而,要将3D-IC技术应用于许多电子系统,需要进一步降低TSV形成成本、实现TSV小型化和提高TSV产量。在各种TSV形成工艺中,中通孔Cu-TSV工艺可以有效减小TSV尺寸并提高TSV产量,因为该工艺易于形成(1)小TSV,并且(2)TSV与多层互连之间的电接触。然而,如果晶圆背面露出的TSV高度变化很大,则可能会发生TSV断裂或接触失效。在之前的研究中,我们提出了一种 Cu-TSV 揭示工艺,包括直接 Si/Cu 研磨和残留金属去除 [7-9](图 1),以克服这一问题。首先,使用新型玻璃化砂轮进行直接 Si/Cu 研磨,并使用高压微射流 (HPMJ) 对砂轮进行原位清洁。由于非弹性
[1] JT Heron, M. Trassin, K. Ashraf, M. Gajek, Q. He, SY Yang, DE Nikonov, Y.-H. Chu, S. Salahuddin 和 R. Ramesh, 《铁磁体-多铁性异质结构中的电场诱导磁化反转》, Phys Rev Lett 107 , 217202 (2011)。[2] SO Sayedaghaee, B. Xu, S. Prosandeev, C. Paillard 和 L. Bellaiche, 《多铁性 BiFeO3 中的新型动态磁电效应》, Phys Rev Lett 122 , 097601 (2019)。 [3] A. Haykal 等人,BiFeO 3 中受应变和电场控制的反铁磁纹理,Nat Commun 11,1704 (2020)。[4] H. Jang 等人,外延 (001) BiFeO3 薄膜中的应变诱导极化旋转,Phys Rev Lett 101,107602 (2008)。[5] IC Infante 等人,BiFeO 3 中外延应变桥接多铁性相变,Phys Rev Lett 105,057601 (2010)。 [6] H. Béa 等人,巨轴比化合物室温多铁性证据,Phys Rev Lett 102,217603 (2009)。[7] IC Infante 等人,BiFeO 3 薄膜室温附近的多铁性相变,Phys Rev Lett 107,237601 (2011)。[8] H. Béa、M. Bibes、F. Ott、B. Dupé、X.-H. Zhu、S. Petit、S. Fusil、C. Deranlot、K. Bouzehouane 和 A. Barthélémy,多铁性 BiFeO 3 外延薄膜的交换偏置机制,Phys Rev Lett 100,017204 (2008)。 [9] D. Lebeugle,D. Colson,A. Forget,M. Viret,AM Bataille 和 A. Gukasov,室温下电场诱导 BiFeO3 单晶自旋翻转,Phys Rev Lett 100,227602(2008)。[10] A. Finco 等人,非共线反铁磁体中的拓扑缺陷成像,Phys Rev Lett 128,187201(2022)。[11] M. Hambe,A. Petraru,NA Pertsev,P. Munroe,V. Nagarajan 和 H. Kohlstedt,跨越界面:磁性复合氧化物异质结构中隧道电流的铁电控制,Adv Funct Mater 20,2436(2010)。 [12] SR Burns、O. Paull、J. Juraszek、V. Nagarajan 和 D. Sando,《外延 BiFeO 3 中的摆线或非共线反铁磁性实验指南》,《先进材料》第 32 卷,2003711 页 (2020 年)。[13] M. Cazayous、Y. Gallais、A. Sacuto、R. de Sousa、D. Lebeugle 和 D. Colson,《在 BiFeO 3 中可能观察到摆线电磁振子》,《物理评论快报》第 101 卷,037601 页 (2008 年)。[14] D. Sando 等人,《通过外延应变制作 BiFeO 3 薄膜的磁振子和自旋电子响应》,《自然材料》第 12 卷,641 页 (2013 年)。 [15] J. Li 等人,亚太赫兹产生的反铁磁磁振子的自旋电流,Nature 578,70 (2020)。[16] E. Parsonnet 等人,在没有施加磁场的情况下对热磁振子的非挥发性电场控制,Phys Rev Lett 129,87601 (2022)。[17] S. Manipatruni、DE Nikonov、CC Lin、TA Gosavi、H. Liu、B. Prasad、YL Huang、E. Bonturim、R. Ramesh 和 IA Young,可扩展的节能磁电自旋轨道逻辑,Nature 565,35 (2019)。 [18] YT Chen、S. Takahashi、H. Nakayama、M. Althammer、STB Goennenwein、E. Saitoh 和 GEWBauer, 自旋霍尔磁阻理论, Phys Rev B 87 , 144411 (2013)。[19] J. Fischer 等人, 反铁磁体/重金属异质结构中的自旋霍尔磁阻, Phys Rev B 97 , 014417 (2018)。
电流检测电阻是低欧姆电阻,通常小于 1 欧姆。这些电阻不能屏蔽寄生电感的影响,而是有助于整体抵消影响。当电阻较低时,阻抗会随着频率的升高而增加。这意味着具有高频分量的交流电流(例如锯齿波)会产生不准确的检测结果。当交流电流流过低电阻电阻时,电阻两端的电压降是电阻引起的电压降和电感引起的电压降之和。为确保准确的电流检测,建议使用电感最小的低电阻电阻进行大电流检测。
业界正在研究电阻式存储器件,尤其是那些基于可溶液处理、化学变化且成本低廉的有机材料的器件。在本文中,我们通过在 ITO 基板上旋涂一层有机的钌 (II) 薄层来制造电阻式存储器件。制造的电阻式存储器件利用通过旋涂沉积在 ITO 基板上的钌 (II) 薄层,表现出低电阻和高电阻导电状态。这些特性使它们非常适合电阻式随机存取存储器 (RRAM) 应用。RRAM 因其高可扩展性、快速切换速度和低功耗而成为一种很有前途的非易失性存储器技术。通过利用低电阻和高电阻状态,电阻式存储器件可以有效地存储二进制数据,为各种基于存储器的系统提供潜在应用,包括固态硬盘、嵌入式系统和物联网 (IoT) 设备。有机钌 (II) 薄层的使用为探索电阻式存储器器件的性能和稳定性提供了一种新途径,为 RRAM 技术的进一步发展铺平了道路。” 使用扫描电子显微镜 (SEM)、X 射线衍射 (XRD) 和能量色散 X 射线光谱 (EDX) 来表征该器件。还获得了这些器件的电流-电压特性。测量了低电阻和高电阻传导状态,发现它们非常适合电阻式随机存取存储器应用。此外,我们观察到随着有机层厚度的增加,开关得到改善,因此电阻比提高了 10 倍。 (2022 年 12 月 19 日收到;2023 年 8 月 7 日接受) 关键词:钌、开关、器件、电性能
上下文:锻炼引起的肌肉损伤(EIMD)尤其是在运动和康复中。它会导致骨骼肌功能和酸痛的损失。由于没有公司的预防策略,我们旨在评估非热448-kHz电容性电阻单极射频(CRMRF)疗法的预防效率,在膝盖流动中EIMD反应的偏心后出现后,设计:在对照组(CG; n = 15)和实验组(例如; n = 14)中随机分配29名健康男性(年龄:25.2 [4.6] y),其中EG跟随5每天448-kHz CRMRF疗法。所有评估均在基线和EIMD后(EIMD + 1,EIMD + 2,EIMD + 5和EIMD + 9 D)进行。我们测量了股二头肌和半牙肌的张力学,以计算收缩时间,最大位移和收缩的径向速度,单侧等距膝关节孔,最大的自愿收缩扭转扭转扭转扭转和最大的100毫秒速度。结果:最大的自愿收缩扭矩和第一次100毫秒的扭矩发育速率降低了,例如在EG中,并且仅在EG中恢复。二头肌收缩时间仅在CG中增加(无恢复),而在半决肌收缩时间中,EG(仅在EIMD + 1)和CG(无恢复)中增加了。在这两种肌肉中,EG(在EIMD + 1和EIMD + 2)和CG(无恢复)中的张力学最大位移降低。此外,在两种肌肉中,径向收缩的径向速度在EG中(从EIMD + 1到EIMD + 5)和CG(无恢复)。结论:该研究表明,诱导EIMD骨骼肌力量和膝关节骨的收缩参数后,CRMRF治疗的有益作用。
生物生物体中的触感是一种依赖各种专业受体的教师。这项研究中介绍的双峰传感皮肤,结合了将皮肤归因于机械和热感受器功能的软电阻复合材料。模仿不同自然受体在皮肤层的不同深度中的位置,可以实现软电阻式组合的多层布置。然而,信号响应的大小和刺激的定位能力随双峰皮肤的较轻压力而变化。因此,采用了一种基于学习的方法,可以帮助您对4500探针的刺激进行预测。类似于人脑中的认知功能,两种类型的感觉信息之间的感觉信息的串扰使学习体系结构可以更准确地预测刺激的定位,深度和温度。使用8机械感受器和8个热感应感应元素的定位精度为0.22 mm,温度误差为8.2°C,对于较小的元素间距离实现了。将双模态感测多层皮肤与神经网络学习方法结合起来,使人造触觉界面更接近地模仿生物皮肤的感觉能力。