基于电阻开关存储器(也称为忆阻器或 RRAM)的新型计算架构已被证明是解决深度学习和脉冲神经网络能源效率低下问题的有前途的方法。然而,电阻开关技术尚不成熟,存在许多缺陷,这些缺陷通常被认为是人工神经网络实现的限制。尽管如此,可以利用合理的可变性来实现高效的概率或近似计算。这种方法可以提高稳健性、减少过度拟合并降低特定应用(如贝叶斯和脉冲神经网络)的能耗。因此,如果我们将机器学习方法适应电阻开关存储器的固有特性,某些非理想性可能会成为机会。在这篇简短的评论中,我们介绍了电路设计的一些关键考虑因素和最常见的非理想性。我们通过成熟的软件方法示例说明了随机性和压缩的可能好处。然后,我们概述了利用电阻开关存储器的缺陷的最新神经网络实现,并讨论了这些方法的潜力和局限性。
主要关键词