对于估计任意量子过程相位的基本任务,设计了一种基于傅里叶的量子相位估计变体,它使用多个纠缠量子比特的探测信号。对于简单的实际实现,每个探测量子比特都可以单独应用和测量。当量子比特最佳纠缠时,可以获得海森堡增强的估计效率缩放。相位估计协议可以在存在量子相位噪声的情况下同样应用。这使我们能够研究一般量子相位噪声对基于傅里叶的相位估计性能的影响。特别是,它揭示了在没有噪声的情况下发现的最佳策略随着噪声的增加逐渐失去其最优性。此外,与无噪声情况相比,在有噪声的情况下,纠缠的存在不再一致有利于估计;存在一个最佳纠缠量来最大化效率,超过该纠缠量就会变得有害。该结果有助于更好地了解量子噪声和纠缠,从而实现量子信号和信息处理。
图 5-16 由于 ADC 孔径不确定性(抖动)导致的采样幅度误差 ............................................................................................................................. 102 图 5-17 预测的 AD6644 SNR 与各种模拟输入频率的时钟抖动 ............................................................................................................. 103 图 5-18 典型的高质量本振 SSB 相位噪声规格 ............................................................................................................................. 105 图 5-19 由于 DNL 导致的 ADC 量化误差 [Brannon 之后,111] ............................................................................. 106 图 5-20 高性能 AD6644 14 位多级 ADC 的架构 [模拟,107] ............................................................................................. 106 图 5-21 应用宽带抖动来改善 ADC SFDR ............................................................................................. 107 图 5-22 添加抖动信号后 AD6644 杂散性能的改善[模拟,107] ................................................................................ 108 图 5-23 由于 HF 拥塞而预测的平均可用抖动功率(下限) ............................................................................................. 109 图 5-24 数字下变频器 ............................................................................................. 110 图 5-25 NCO 作为复杂(正交)直接数字合成器 ............................................................. 112 图 5-26 实用抽取 CIC 滤波器 - 积分器、抽取器和梳状器 ............................................. 113 图 5-27 CIC 的频率响应显示混叠的影响(M=100、L=4、R=1) ............................................................................................................. 113 图 5-28 CIC 滤波器的频率响应与 L 的关系
大多数无线局域网标准(如 IEEE 802.11 a/b/g [1–3])都不符合低成本设计目标,因为这些标准对误码率 (BER)、范围和数据速率都有很高的要求。为了满足低成本要求,需要制定一个性能约束较低的标准,以满足工业和商业、家庭自动化、个人电脑 (PC) 外围设备、消费电子产品、个人保健以及玩具和游戏等成本敏感型应用的需求。为此,IEEE 最近批准了 802.15.4 标准,可在 868/915 MHz 和 2.4 GHz 下运行 [4]。本文介绍了 868/915 MHz ZigBee 收发器的自上而下系统设计和仿真,并推导出一组符合 IEEE 802.15.4 物理 (PHY) 层标准要求的系统级无线电规范。系统级无线电规范包括系统噪声系数、灵敏度、本振相位噪声、信道整形和选择滤波器的阶数、互调特性、模数转换器和数模转换器 (ADC/DAC) 的位分辨率、信道抑制性能和频谱整形。本文还讨论了采用 0.18 µ m 互补金属氧化物半导体 (CMOS) 技术实现单芯片低功耗低成本 ZigBee 收发器的电路拓扑。
RFM26W 模块是一款高性能、低电流收发器,覆盖 142 至 1050 MHz 的次 GHz 频段。它提供出色的 –126 dBm 灵敏度,同时实现极低的有源和待机电流消耗。RFM26W 以极高的频率分辨率提供整个 142–1050 MHz 次 GHz 频段的连续频率覆盖。RFM26W 包括最佳相位噪声、阻塞和选择性性能,适用于窄带和授权频段应用,例如 FCC Part90 和 169 MHz 无线 Mbus。50 dB 相邻信道选择性和 25 kHz 信道间隔确保在恶劣的 RF 条件下实现稳定的接收操作,这对于窄带操作尤为重要。RFM26W 提供高达 +20 dBm 的出色输出功率和出色的 TX 效率。高输出功率和灵敏度可实现行业领先的 146 dB 链路预算,从而实现扩展范围和高度稳定的通信链路。 RFM26W 可实现高达 +27 dBm 的输出功率,并内置低成本外部 FET 的斜坡控制。该设备符合全球所有监管标准:该模块符合全球所有监管标准:FCC、ETSI 和 ARIB。所有设备均设计为符合 802.15.4g 和 WMbus 智能计量标准。
摘要:本文介绍了一种 40 GHz 压控振荡器 (VCO) 和分频器链,采用意法半导体 28 nm 超薄体盒 (UTBB) 全耗尽绝缘体上硅 (FD-SOI) 互补金属氧化物半导体 (CMOS) 工艺制造,具有八层金属后道工艺 (BEOL) 选项。VCO 架构基于带有 p 型金属氧化物半导体 (PMOS) 交叉耦合晶体管的 LC 谐振腔。VCO 通过利用可通过单个控制位选择的两个连续频率调谐带,展现出 3.5 GHz 的调谐范围 (TR)。在 38 GHz 载波频率下测得的相位噪声 (PN) 分别为 - 94.3 和 - 118 dBc/Hz(频率偏移为 1 和 10 MHz)。高频分频器(频率从 40 GHz 到 5 GHz)采用三个静态 CMOS 电流模式逻辑 (CML) 主从 D 型触发器级制成。整个分频器因子为 2048。低频分频器采用工作频率为 5 GHz 的 CMOS 触发器架构。VCO 核心和分频器链的功耗分别为 18 和 27.8 mW(电源电压为 1.8 和 1 V)。使用热室在三个结温(即 − 40、25 和 125 ◦ C)下验证了电路的功能和性能。
摘要 — 本文介绍了一种宽调谐范围双模毫米波 (mm-wave) 压控振荡器 (VCO),该振荡器采用了基于高品质因数 (Q) 变压器的可变电感器。通过构建高 Q 固定电容器变压器负载与无损开关结构串联,提出了一种具有两个不同值的高 Q 开关电感器,该无损开关结构不会像通过改变电容器上的信号模式那样给 LC 谐振回路增加任何损耗。通过为每种模式选择合适的中心频率和足够的频率重叠,可以设计宽频率调谐范围 (FTR) 毫米波 VCO。它提供了几乎两倍的调谐范围,同时保持相位噪声 (PN) 与使用两个独立电感器设计的双模 VCO 几乎相同。该 VCO 采用 65 nm CMOS 工艺制造,在 64.88 至 81.6 GHz 范围内测得的 FTR 为 22.8%。测量的 10 MHz 偏移处的峰值 PN 为 -114.63 dBc/Hz,最佳 FOM 和 FOM T 的最大和最小对应值分别为 -173.9 至 -181.84 dB 和 -181.07 至 -189 dB。VCO 核心在 1 V 电源下消耗 10.2 mA 电流,占用面积为 0.146 × 0.205 mm 2 。
RF简介:RF范围,皮肤效应,行为和等效电路,如R,L,C,高RF。传输线理论,反射系数,史密斯图计算,阻抗匹配,S-参数。(L-7&T-2)RF设计中的基本概念:RF DC设计。六边形无线通信标准,非线性,谐波,增益压缩,脱敏,交叉调制,间调制失真(IMD),输入截距(IIP3&iip3&iip2),符号间干扰。噪声,主动设备的噪声分析。(L-8&T-2)RF系统中的基本块及其VLSI实施:RF的MOSFET行为,晶体管和香料模型的建模,HEMT和MESFET等高速设备,BICMOS技术,BICMOS技术,在高频及其单声道实现的寄生元素及其单层实现者的集成寄生元素,低噪声效果和低噪声器设计。(L-10和T-4)振荡器:基本VCO拓扑,相位噪声,噪音功率权衡。谐振器较少的VCO设计,GHz频率混合器设计和问题,射频综合:PLL,各种RF合成器体系结构和频率分隔线。(L-9&T-3)反式接收器体系结构:TRF接收器,杂化接收器,同伴接收器,不同的接收器拓扑,RF接收器体系结构及其设计问题,集成的RF过滤器,IC应用程序,IC应用程序和案例研究,用于DECT,GSM和蓝牙。(L-8&T-3)
50 par. L1、C / A、WAAS、EGNOS、SBAS 50 ADLMMETNOTV2 1.5 x 3.5 x 0.8 英寸 1.8 盎司 <2 米 RMS <30ns RMS 1Hz <45s <1s <1s 1 RS - 232、警报、10 / 25 / 50 / 100MHz、1PPS 115、200 -20 至 +85' 11.0 - 14.0 V <3.5W 5V 添加四个 25MHz LVDS 输出(50MHz 选项)、一个 100MHz 输出和一个 10MHz 输出 Mini - JLT GPSDO 50 par. L1、C / A、WAAS、EGNOS、SBAS 50 ADLMMETNOTV2 5.05 x 1.38 x 0.7 英寸 2 盎司 <2 米 RMS <15 纳秒 RMS 1Hz <45 秒 <1 秒 <1 秒 2 TTL / USB NMEA - 0183、SCPI、10MHz 9600bps 异步 -30 至 +70 5V <2.5W 3.3V / 5V Trimble Mini - T Legacy 更换单元,具有改进的相位噪声、ADEV 和更宽的温度范围 LC_XO GPSDO 10MHz 50 标准杆。 L1、C / A、WAAS、EGNOS、SBAS 50 ADLMMETNOTV2 0.97 x 0.97 x 0.5 <1oz <2m RMS <30ns RMS 1Hz <45s <1s <1s 1 TTL NMEA - 0183、SCPI、10MHz 9、600 - 115、200 -35 至 +75 3.3V <0.55W 5V 可插座低成本 GPSDO 模块,具有 1 平方英寸的占位面积和 10MHz 输出 日本无线株式会社 www.jrc.co.jp/eng/
随机数具有广泛的应用 [1],从彩票和赌博的蒙特卡洛模拟 [2] 到经典和量子密码协议 [3-6]。对于大多数这些任务,生成数字的隐私起着至关重要的作用,即随机数既不能被任何模型预测,也不能被攻击者获得至少可以部分预测它们的信息。量子随机数生成器 (QNRG) 至少在理论上提供了创建这种不可预测的随机数的可能性 [7,8],这是由于其生成过程的物理性质和量子理论固有的不确定性。QRNG 实现的典型示例是分束器上的光子 [9]、真空的同相测量 [10] 或激光相位噪声 [11]。然而,现实生活中的 QRNG 实现通常存在缺陷,这为攻击者获取有关生成数字的至少部分信息打开了大门。在本文中,我们针对这种非理想 QRNG 采用了基本的两量子比特模型,以确定攻击者通过利用 QRNG 的缺陷最多可以获得多少信息。为了通过实验实现我们的模型,必须满足两个条件:(i) 两个量子比特系统的控制和纠缠,以及 (ii) 对两个量子比特进行断层扫描。幸运的是,这两个要求都可以轻松实现。在过去的几年中,已经实现了大量控制和测量两量子比特系统的实验,范围从超导量子比特 [ 12 ]、捕获离子 [ 13 , 14 ] 和里德堡原子 [ 15 ],到纠缠光子 [ 16 ]。还展示了不同系统的断层扫描 [ 17 , 18 ]。
国家和团体。量子力学公理、量子比特、自旋-1/2、光子极化、密度算子、二分量子系统、布洛赫球、施密特分解、纠缠、集合解释的模糊性、凸性、集合的准备、比光还快?量子擦除、HJW 定理、两个量子态相距多远?、保真度和乌尔曼定理、距离测量之间的关系。措施和演变。正交测度及其他、正交测度、广义测度、量子通道、求和算子表示、可逆性、海森堡框架中的量子通道、量子运算、线性、完全正性、通道状态对偶和通道扩张、通道状态对偶、Stinespring 扩张、重新审视公理、三个量子通道、去极化通道、相移通道、振幅衰减通道、开放量子系统的主方程、马尔可夫演化、刘维尔、阻尼谐振子、非马尔可夫噪声、高斯相位噪声、自旋回波、量子比特作为噪声谱仪、非零温度下的自旋玻色子模型。量子纠缠。 EPR 对的不可分离性、隐藏量子信息、爱因斯坦局部性和隐藏变量、贝尔不等式、三个量子硬币、量子纠缠与。爱因斯坦局域性、其他贝尔不等式、CHSH 不等式、最大违反、量子策略优于经典策略、所有纯纠缠态都违反贝尔不等式、光子、实验和漏洞、使用纠缠、密集编码、量子隐形传态、量子隐形传态和最大纠缠、量子软件、量子密码学、EPR 量子密钥分发、无克隆、混合态纠缠、可分离性的部分正转置准则、无纠缠的非局域性、多方纠缠、量子三盒、猫态、纠缠增强通信、操纵纠缠。