激烈的全球开发量子计算机的竞争导致光学因其独特的方法而获得了显着的影响。在2020年,中国通过实现“量子至上”的新闻:光学量子计算机击败了特定计算中最新的超级计算机[1]。2022年,一家加拿大风险公司Xanadu开发了一台光学量子计算机,该计算机还完成了“量子至上”,并启用了云服务供公共使用[2]。这是作者的个人信念,即在光学量子计算机方面,日本由于我们独特的方法而站在世界的前线[3,4]。本文的目的是阐明光学量子计算机引起关注并提出最新研究发展的原因。在考虑量子计算机时,许多人可能会想到超导类型。所有主要的IT公司,例如IBM,都在开发超导量子量子器。在2019年,Google对量子计算的超导量子计算引起了关注,此前有消息称:“量子计算机在三分钟内解决了一个计算,这将为超级计算机需要10,000年的计算” [5]。的确,超级传导方法是当今的主流方法。但是,其发展仍处于起步阶段。就像前跑者真空管计算机完全被晶体管计算机所取代一样,没有人可以预测量子计算的不同方法的未来。近年来,光量子计算机的存在显着增加。研究除了超级传导量子计算机外,如今在全球范围内竞争各种方法,例如被困的离子,半导体和中性原子,并且大多数研究人员都同意赢家仍然未知。原因是,随着新方法的诞生,可能的飞跃变得显而易见[4]。如上所述[2],Xanadu的光学量子计算机实现了“量子至上”的外观,实现了10,000多个光脉冲[6-8]的量子纠缠以及高度可扩展的光学量子计算机架构的理论建议[9-11]是这种新方法的所有结果。从历史上看,与其他量子相比,从技术上讲是光量子的光子在技术上更易于操作和测量,并且已用于量子力学中的原理验证实验。
计算机及其组件理论:05 分教科书问题 A. 多项选择题 1. 未处理的事实、数字和符号的集合称为 ____________。 (a) 信息 (b) 软件 (c) 数据和信息 (d) 以上都不是 答案。 (d) 以上都不是,因为正确答案是数据 2. ______________ 是数据的处理形式,组织得有意义且有用。 (a) 信息 (b) 软件 (c) 数据 (d) 以上都不是 答案。 (a) 信息 3. 硬件是计算机中具有可以看到和触摸的物理结构的任何部分。 (a) 对 (b) 错 (c) 不确定 (d) 以上都不是 答案。 (a) 对 4. 计算机硬件的组件是 ____________________________。 (a) 输入设备和输出设备 (b) 系统单元和存储设备 (c) 通信设备 (d) 以上所有 答案。 (d) 以上所有 5. __________ 设备接受来自用户的数据和指令。 (a) 输出 (b) 输入 (c) 硬件组件 (d) 存储 答案 (b) 输入 6. 哪种磁盘由涂有磁性材料的圆形薄塑料外壳组成? (a) 硬盘 (b) 光盘 (c) DVD (d) 软盘 答案 (d) 软盘 7. ___________ 磁盘用于在更短的时间内以非常高的速度存储超过 25 GB 的数据。 (a) 数字多功能 (b) 紧凑 (c) 蓝光 (d) 以上都不是 答案 (c) 蓝光 8. 随机存取存储器和只读存储器是 _______________ 的例子。 (a) 主存储器 (b) 辅助存储器 (c) 辅助存储器 (d) 主存储器和辅助存储器 答案 (a) 主存储器 9. 哪种系统只使用数字 0 和 1? (a) 位 (b) 二进制数系统 (c) 辅助数系统 (d) 半字节 答案(a) 位 10. 软件主要有两种类型,即 _________ 和 __________。 (a) 通用和定制 (b) 操作系统和实用软件 (c) 应用软件和系统软件 (d) 以上都不是 答案。 (c) 应用软件和系统软件 11. Gimp、Adobe Photoshop、Corel Draw、Picasa 等是 _________ 软件的例子。 电子表格 (a) 文字处理器 (b) 桌面出版 (c) 演示文稿 答案。 (b) 桌面出版 12. 哪一代计算机使用高级语言(例如 FORTRAN 和 COBOL)并且使用晶体管而不是真空管? (a) 第一代 (b) 第二代 (c) 第三代 (d) 第五代
Markus Mirz 1 m.mirz@iwm.rwth-aachen.de ; Marie Franke-Jurisch 2 marie.franke-jurisch@ifam- dd.fraunhofer.de ; Simone Herzog 1 s.herzog@iwm.rwth-aachen.de ; Anke Kaletsch 1 a.kaletsch@iwm.rwth-aachen.de ; Christoph Broeckmann 1 c.broeckmann@iwm.rwth-aachen.de 1 德国亚琛工业大学机械工程材料应用研究所 2 德国德累斯顿弗劳恩霍夫制造技术与先进材料研究所 摘要 粉末冶金法 (PM) 热等静压 (HIP) 中抽真空管的主要用途在于对胶囊进行抽真空和排气。传统的 HIP 胶囊由具有良好可焊性的金属板制成,因此易于连接抽吸管。随着增材制造 (AM) 等新兴技术的出现,现在可以设计更复杂的 HIP 胶囊。此外,还可以使用耐磨、富含碳化物的钢。然而,众所周知,这些材料难以焊接。本研究比较了两种不同的方法,将 AISI 304L 抽吸管粘合到由电子束熔化 (EBM) 以高碳工具钢 AISI A11 制成的 HIP 胶囊上。胶囊通过 TIG 焊接和钎焊连接,使用传统填充材料和基于热力学计算的定制填充材料。随后通过 HIP 进行固结,微观结构分析和氩气测量揭示了这三种方法对于气密接头的可行性和局限性。简介热等静压 (HIP) 是一种将金属粉末固结成固体材料的成熟工艺。它是在航空航天、汽车、石油和天然气等要求严格的行业中生产近净成形零件最可靠的成形工艺之一 [1]。使用一个或多个填充管将粉末填充到薄壁胶囊中。为了达到理想的高填充密度,填充过程通常在恒定振动下进行 [2]。之后,胶囊内的散装粉末通过真空泵通过抽气管排气,并在真空下保持数小时。在仍处于真空状态时,可通过锻造和焊接抽气管来封闭胶囊。在高温高压下,在 HIP 容器内对封装和脱气的粉末压块进行致密化 [3,4],这是最后一步,之后通过锯切、车削或铣削取出胶囊以获得成品部件。整个 HIP 工艺链如下图所示。
尽管自第一版出版以来,雷达的基本原理几乎没有变化。新的雷达功能不断发展,雷达技术和实践也不断改进。这种发展使得必须进行大量修订,并引入原版中没有的主题。其中一个主要变化是对 MTI(移动目标指示)雷达的处理(第4 章)。已添加的大多数基本 MTI 概念在第一版出版时就已经为人所知,但它们尚未出现在公开文献中,也没有在实践中得到广泛应用。将其纳入第一版将主要是学术性的,因为当时可用的模拟延迟线技术无法构建理论上可行的复杂信号处理器。然而,后来数字技术的进步(最初是为雷达以外的应用而开发的)已使基本 MTI 理论所指出的多个延迟线消除器和多个脉冲重复频率 MTI 雷达得以实际实施。自动检测和跟踪,或称 ADT(第 5.0 和 10.7 节)是另一项重要发展,其基本理论已为人所知,但其实际实现必须等待数字技术的进步。ADT 的原理在 20 世纪 50 年代初得到验证,使用真空管技术,作为麻省理工学院林肯实验室开发的美国空军 SAGE 防空系统的一部分。这种形式的 ADT 体积庞大、价格昂贵且难以维护。然而,20 世纪 60 年代末固态微型计算机的商业化使 ADT 变得相对便宜、可靠且体积小,因此几乎可以用于任何需要它的监视雷达。另一个得到很大发展的雷达领域是电子控制相控阵天线。在第一版中,雷达天线是主题或单独的一章。在这一版中,有一章介绍了传统雷达天线(第7 章),还有一章介绍了相控阵天线(第8 章)。用一章来介绍阵列天线更多的是出于兴趣,而不是对广泛应用的认可。有关雷达杂波的章节(第章)已重新组织,以包括在杂波存在下检测目标的方法。一般而言,在杂波背景中检测目标所需的设计技术与在噪声背景中检测目标所需的设计技术有很大不同。当前版本中新增或发生重大变化的其他主题包括低角度跟踪、“同轴”跟踪、固态射频源、镜面扫描天线、天线稳定、相控阵的计算机控制、固态双工器、CF AR、脉冲压缩、目标分类、合成孔径雷达、超视距雷达、对空监视雷达、测高仪和 30 雷达以及 ECCM。双基地雷达和毫米波雷达也包括在内,尽管它们的应用已经
由于在热身时间,尺寸和高电压需求方面,真空管的缺点,摘要,固态功率放大器(SSPA)带有氮化碳(GAN)单片微小电路集成电路(MMIC)是电源水平的关键解决方案,可在连续波浪中进行一些均匀水平。 SSPA是这些RF功率水平最方便的解决方案,这是由于其重量低,尺寸较小,可以忽略不计的热身操作,低压操作和高可靠性。 空间功率放大器(SPA)组合技术是SSPA的最佳候选者,这是由于分裂和组合功能的固有低衰减。 水疗中心主要使用两种类型的探针:横向和纵向,例如鳍线。 本文介绍了基于介电透镜理论的微带(FLUS)过渡的宽带鳍。 与传统芬兰过渡的比较模拟显示出匹配性能的显着改善,并且过渡的机械电阻有很大的提高。 所提出的创新flus使用根据介电镜头理论设计的底物。 显示了WR22波导内部的FLU的频率模拟。 这些证据比使用四分之一波变压器(QWT)匹配的经典FLUS过渡更好的表现。 制作并测量了带有介电透镜的Q带空间功率组合器,显示了这种创新的FLUS过渡的出色性能。摘要,固态功率放大器(SSPA)带有氮化碳(GAN)单片微小电路集成电路(MMIC)是电源水平的关键解决方案,可在连续波浪中进行一些均匀水平。SSPA是这些RF功率水平最方便的解决方案,这是由于其重量低,尺寸较小,可以忽略不计的热身操作,低压操作和高可靠性。空间功率放大器(SPA)组合技术是SSPA的最佳候选者,这是由于分裂和组合功能的固有低衰减。水疗中心主要使用两种类型的探针:横向和纵向,例如鳍线。本文介绍了基于介电透镜理论的微带(FLUS)过渡的宽带鳍。与传统芬兰过渡的比较模拟显示出匹配性能的显着改善,并且过渡的机械电阻有很大的提高。所提出的创新flus使用根据介电镜头理论设计的底物。显示了WR22波导内部的FLU的频率模拟。这些证据比使用四分之一波变压器(QWT)匹配的经典FLUS过渡更好的表现。制作并测量了带有介电透镜的Q带空间功率组合器,显示了这种创新的FLUS过渡的出色性能。
简介和动机 在过去十年中,机器学习 (ML) 技术逐渐进入加速器社区。近年来,深度学习的快速发展,特别是用于控制系统应用的强化学习以及深度学习在嵌入式硬件中的可访问性,重新引起了人们的兴趣并催生了大量应用 [ 1 ]。费米实验室加速器综合体(如图 1 所示)已为高能物理 (HEP) 实验提供了近五十年的质子束。该实验室目前的重点是其世界一流的强度前沿实验项目。虽然增加光束强度确实有其自身的挑战,但在很多方面,保持光束大小同时最大限度地减少光束损失(通过与光束真空管相互作用而损失的粒子)才是主要挑战。加速器通过数十万个设备的复杂系统进行控制。使用 ML 方法实现对其参数的微调和实时优化并超越人类操作员基于经验的推理是未来强度升级成功的关键。我们的目标是将 ML 集成到加速器操作中,此外,提供一个可访问的框架,该框架也可被具有动态调整需求的其他广泛加速器系统使用。为了成功最大限度地发挥 ML 的应用优势,我们将考虑以下几点:实时边缘 ML 系统优化:加速器涉及电源、射频和其他控制系统的复杂调节回路阵列。调节回路的增益针对操作进行手动优化和修复。实际上,光束分布和强度是在加速过程中变化的动态量。因此,这些动态系统理想情况下应该以近乎实时的方式重新检查操作条件。这需要一个能够在足够短的毫秒时间尺度上对系统变化做出反应的 ML 模型。快速、智能的分布式系统:由于粒子加速器的物理规模很大,控制系统往往分布在整个设施中。因此,优化每台机器的性能以及综合体的整体性能意味着需要一个快速的数据传输系统,允许子系统、机器和负责运行 ML 算法的计算机资源之间进行实时通信。我们的项目 Accelerator READS 将开发 ML 方法及其在大型加速器系统中的边缘实现。费米实验室在开发用于系统控制的实时嵌入式边缘 ML 设备方面处于领先地位,并利用 ML 提高了 HEP 实验的效率和准确性,例如紧凑型μ子螺线管 (CMS) 实验 [ 2 ]。利用内部实验室指导的研究和开发 (LDRD) 计划,费米实验室已经证明单个 ML 系统可以提高加速器性能。然而,将嵌入式 ML 系统连接在一起以协调分析和控制多个复杂结构尚未实现。将这项技术应用于加速器将使费米实验室加速器设施向快速、分布式和高性能控制和操作迈进。加速器 READS 产生的方法和工具将与各种复杂和分布式控制器的设计相关。我们将通过两个重要的实验来证明我们提案的有效性:Mu2e 溢出调节系统和主喷射器 (MI) 和循环器环 (RR) 光束损耗的去混合。
过去 20 年,我们在创建、控制和测量超导“人造原子”(量子比特)和存储在谐振器中的微波光子的量子态方面取得了令人瞩目的实验进展。除了作为研究全新领域强耦合量子电动力学的新型试验台之外,“电路 QED”还定义了一种基于集成电路的全电子量子计算机的基本架构,该集成电路的半导体被超导体取代。人造原子基于约瑟夫森隧道结,它们的尺寸相对较大(约毫米),这意味着它们与单个微波光子的耦合非常强。这种强耦合产生了非常强大的状态操纵和测量能力,包括创建极大(> 100 个光子)“猫”态和轻松测量光子数奇偶性等新量的能力。这些新功能使基于在微波光子的不同 Fock 态叠加中编码量子信息的“连续变量”量子误差校正新方案成为可能。在我们尝试构建大规模量子机时,我们面临的最大挑战是容错能力。如何用大量不完美的部件构建出一台近乎完美的机器?二战后,冯·诺依曼开始在经典计算领域探讨这个问题 [ 1 ] 。1952 年,他在加州理工学院的一系列讲座中(这些讲座于 1956 年发表 [ 2 ] ;在耶鲁大学的西利曼讲座中,他未能出席,但其手稿在他死后出版 [ 3 ] 。除了思考当时粗糙、不可靠的真空管计算机外,他还对大脑中复杂神经元网络的可靠计算能力着迷。克劳德·香农 (Claude Shannon) 也对这个问题非常感兴趣 [ 5 ] ,他的硕士论文首次证明开关和继电器电路可以执行任意布尔逻辑运算 [ 4 ] 。冯·诺依曼证明(并不十分严格),一个可由 L 个可靠门网络计算的布尔函数,也可以由 O(L log L)个不可靠门网络可靠地(即以高概率)计算。Dobrushin 和 Ortyukov [6] 严格证明了这一结果。若要进一步了解该领域,可参考 [7-10] 等相关著作。现代观点将使用不可靠设备的可靠计算问题与香农信息论 [11] 联系起来,该理论描述了如何在噪声信道上进行可靠通信。如图 1 所示,在香农信息论中,只有通信信道被视为不可靠的,输入处的编码和输出处的解码被认为是完美的。通过使用对为香农通信问题设计的代码字进行操作的电路模块并经常检查它们,不可靠的电路也可以执行可靠的计算。诀窍在于找到区分模块输出和输入差异的方法,这些差异是故意的(即由于模块正确计算了输入的预期功能)还是错误的 [ 10 ] 。除了与信息论的这种关键联系之外,与控制论也有重要的联系,如图 2 所示。量子计算机是一个动态系统,尽管噪音和错误会不断发生,我们仍试图控制它。诺伯特·维纳创立的经典控制理论处理容易出错的系统(传统上称为“工厂”,实际上可能代表汽车制造厂或化工厂)。如图 3 所示,传感器连续测量工厂的状态,控制器分析这些信息并使用它来(通过“执行器”)向工厂提供反馈,以使其稳定可靠地运行。鲁棒控制系统能够处理传感器、控制器和执行器单元也可能由不可靠的部件制成的事实。我们会发现这是一个有用的观点,但在思考量子系统的控制时,我们必须处理许多微妙的问题,因为我们知道对量子态的测量会通过测量“反向作用”(状态崩溃)扰乱状态。
早期计算历史跨越数千年,算盘是最早用于计算的设备之一。巴比伦人在公元前 300 年创造了早期版本,而后来的版本则在公元 1200 年左右出现在中国和日本。在 17 世纪,布莱斯·帕斯卡和威廉·莱布尼茨等发明家开发了机械计算器,包括帕斯卡的齿轮式机器。查尔斯·巴贝奇于 1822 年设计了第一台机械计算机差分机。虽然他的设计由于资金问题而从未完成,但它为更复杂的设计奠定了基础。算法和编程的概念在这一时期开始形成。洛夫莱斯伯爵夫人奥古斯塔·艾达·金(拜伦)通常被认为是第一位程序员,她在 1843 年开发了一种名为 Ada 的计算机语言。她写了关于查尔斯·巴贝奇的分析机的笔记,该机旨在使用打孔卡进行计算。随着技术的进步,计算设备也在不断发展。第一台电子计算机出现于 20 世纪中叶,ENIAC(电子数字积分计算器)是 1946 年开发的第一台大型数字计算机。真空管最初用作电子开关,但后来被晶体管取代。晶体管的发明导致了集成电路的发展,集成电路涉及在单个硅片上放置多个晶体管设备。微处理器通过将中央处理器 (CPU) 封装到单个芯片上,彻底改变了计算方式。这标志着第四代计算机的开始,并为我们今天使用的现代计算系统铺平了道路。计算的历史丰富多彩,跨越了几个世纪和大洲。从算盘等古老设备到现在主宰我们生活的复杂机器,每一项创新都建立在上一项创新的基础上,从而带来了我们在现代技术中看到的令人难以置信的进步。英特尔公司推出了第一款微处理器芯片 Intel 4004,其工作频率为 108 kHz,包含大约 2300 个晶体管,相当于 15 台 IBM 个人电脑。 1981 年 8 月 12 日,IBM 发布了其新计算机 IBM PC。2004 年,IBM 将其 PC 业务出售给联想。苹果电脑公司由史蒂夫·乔布斯和史蒂夫·沃兹尼亚克于 1975 年创立,并于 1984 年推出了带有图形用户界面 (GUI) 的 Macintosh。笔记本电脑从 1981 年亚当·奥斯本的 Osborne 1 发展到 1988 年康柏的彩屏笔记本电脑,随后是 2008 年最薄的笔记本电脑 MacBook Air 和 2011 年戴尔 XPS 15Z。微软继续更新 Windows,推出其最新版本“Windows 8”。Linux 操作系统作为 MS Windows 的开源替代品而广受欢迎。最大的 PC 制造商惠普计划出售其 PC 部门,而苹果仍然是个人电脑的主要参与者,尤其是在创意市场。谷歌成为互联网解决方案的重要参与者。从 1990 年到今天,计算机的发展趋势是速度更快、体积更小、更可靠、更便宜、更易于使用。第五代计算设备专注于人工智能、并行处理以及开发响应自然语言输入并具有学习和自我组织的设备。计算机是一种数字设备,可以对其进行编程以将信息从一种形式转换为另一种形式,并且只理解两种状态(开/关或 0/1)。传统计算机包括 NASA 等组织使用的超级计算机和 20 世纪 50 年代为大型企业推出的大型计算机。个人计算机是小型、独立的设备,使用微处理器拥有自己的 CPU。硬件是指计算机的物理组件,而软件则由告诉计算机做什么的程序(指令)组成,存储在硬盘、CD-ROM、软盘或磁带等介质上。处理器是计算机的大脑,包括系统板、接口板和扩展槽。计算机的大脑是 CPU(中央处理器),这是一个或多个集成电路上的复杂电子电路,用于执行软件指令并与其他系统部件(尤其是 RAM 和输入设备)通信。CPU 是计算机的心脏。RAM(随机存取存储器)是一种临时存储器,以电子方式存储 ON 和 OFF 位,但断电时,RAM 中的所有内容都会丢失。它是易失性的,用于存储软件和数据。ROM(只读存储器)是用于永久存储启动指令和其他关键信息的集成电路。用户无法更改或删除此信息;它由制造商固定。ROM 也称为 ROM BIOS(基本输入输出系统软件)。ROM 包含启动指令和输入输出设备的低级处理,例如与键盘和显示器的通信。计算机经历了几代:第一代(1940-1956 年)使用真空管作为电路,使用磁鼓作为存储器。UNIVAC 和 ENIAC 是第一代计算机的代表。第二代计算机(1956-1963 年)使用晶体管,允许使用符号或汇编语言以文字指定指令。在此期间开发了 COBOL、FORTRAN、ALGOL 和 SNOBOL 等高级编程语言。与第一代计算机相比,第二代计算机的优势包括耗电量更少、体积更小、硬件故障更少、编程更简单。第四代计算机的性能和效率比前代计算机更高。这些系统使用微处理器,将数千个集成电路封装在单个硅片上,从而提高了处理速度。半导体存储器的集成实现了更快的数据传输速率,使硬盘更小、更便宜、更宽敞。此外,软盘和磁带的使用促进了计算机之间的数据移植,而图形用户界面 (GUI)、鼠标和手持设备的开发进一步提升了用户体验。在此期间,出现了 MS-DOS、MS-Windows、UNIX 和 Apple 专有系统等新操作系统,并辅以文字处理软件包、电子表格软件和图形工具。计算机的发展导致了更快、更大的主存储器和辅助存储器的发展。这使得可以在各种环境中使用的通用计算机得以创建。图形用户界面 (GUI) 简化了计算机的使用,使其可供更广泛的受众使用。因此,计算机成为办公室和家庭环境中日常生活中不可或缺的一部分。网络功能进一步推动了计算机的广泛采用,这促进了资源共享和硬件和软件的有效利用。第五代计算机正在以人工智能为核心进行开发。虽然仍处于开发阶段,但语音识别等应用程序已经在今天使用。目标是创建能够响应自然语言输入并能够学习和自我组织的设备。第五代计算机的两种主要编程语言是 LISP 和 Prolog。根据计算机的速度、数据存储容量和价格,计算机大致可分为四类。这些分类包括:1. 主存储器:接受数据或指令 2. 二级存储器:存储数据 3. 处理:处理数据 4. 输出:显示结果 5. 控制单元:控制和协调计算机内的所有操作 数据和指令的流动由控制单元控制,从而实现高效的处理和输出。目标是创建能够响应自然语言输入并能够学习和自我组织的设备。第五代计算机的两种主要编程语言是 LISP 和 Prolog。根据计算机的速度、数据存储容量和价格,计算机大致可分为四类。这些分类包括:1. 主存储器:接受数据或指令 2. 二级存储器:存储数据 3. 处理:处理数据 4. 输出:显示结果 5. 控制单元:控制和协调计算机内的所有操作 数据和指令的流动由控制单元控制,从而实现高效的处理和输出。目标是创建能够响应自然语言输入并能够学习和自我组织的设备。第五代计算机的两种主要编程语言是 LISP 和 Prolog。根据计算机的速度、数据存储容量和价格,计算机大致可分为四类。这些分类包括:1. 主存储器:接受数据或指令 2. 二级存储器:存储数据 3. 处理:处理数据 4. 输出:显示结果 5. 控制单元:控制和协调计算机内的所有操作 数据和指令的流动由控制单元控制,从而实现高效的处理和输出。