激烈的全球开发量子计算机的竞争导致光学因其独特的方法而获得了显着的影响。在2020年,中国通过实现“量子至上”的新闻:光学量子计算机击败了特定计算中最新的超级计算机[1]。2022年,一家加拿大风险公司Xanadu开发了一台光学量子计算机,该计算机还完成了“量子至上”,并启用了云服务供公共使用[2]。这是作者的个人信念,即在光学量子计算机方面,日本由于我们独特的方法而站在世界的前线[3,4]。本文的目的是阐明光学量子计算机引起关注并提出最新研究发展的原因。在考虑量子计算机时,许多人可能会想到超导类型。所有主要的IT公司,例如IBM,都在开发超导量子量子器。在2019年,Google对量子计算的超导量子计算引起了关注,此前有消息称:“量子计算机在三分钟内解决了一个计算,这将为超级计算机需要10,000年的计算” [5]。的确,超级传导方法是当今的主流方法。但是,其发展仍处于起步阶段。就像前跑者真空管计算机完全被晶体管计算机所取代一样,没有人可以预测量子计算的不同方法的未来。近年来,光量子计算机的存在显着增加。研究除了超级传导量子计算机外,如今在全球范围内竞争各种方法,例如被困的离子,半导体和中性原子,并且大多数研究人员都同意赢家仍然未知。原因是,随着新方法的诞生,可能的飞跃变得显而易见[4]。如上所述[2],Xanadu的光学量子计算机实现了“量子至上”的外观,实现了10,000多个光脉冲[6-8]的量子纠缠以及高度可扩展的光学量子计算机架构的理论建议[9-11]是这种新方法的所有结果。从历史上看,与其他量子相比,从技术上讲是光量子的光子在技术上更易于操作和测量,并且已用于量子力学中的原理验证实验。
主要关键词