图 2 . a) 新鲜状态下 S-1 SAM 的 AFM 形貌图像。b) 对 SAM S-1 施加 0.6 V 电化学电位 1 分钟后获得的 SAM S-2 的 AFM 形貌图像。c) 对 SAM S-1 施加 +1.5 V 电化学电位 10 分钟后获得的 SAM S-2 的 AFM 形貌图像。d) 新鲜制备的 SAM S-1 上水滴的静态图像。e) 对 SAM S-1 施加 +0.6 V 电化学电位 1 分钟后获得的 SAM S-2 上水滴的静态图像。f) 对 SAM S-1 施加 +1.5 V 电化学电位 10 分钟后获得的 SAM S-2 上水滴的静态图像。 S-1 SAM 的 XPS 高分辨率 Si 2p 光谱(g)新鲜制备、(h)在 +0.6 V 下氧化,和(i)在 + 1.5 V 下氧化。
市场新闻 6 智能手机出货量将在 2023 年第三季度小幅下滑后复苏 微电子新闻 8 CML 完成对微波技术的收购 宽带隙电子新闻 10 DENSO 和三菱电机向 Coherent 的 SiC 部门投资 10 亿美元 • Soitec 启动 SmartSiC 晶圆生产工厂 • J2 和 HKSTP 在香港建立第一家 SiC 晶圆厂 • onsemi 完成韩国 SiC 晶圆厂扩建 • 英飞凌完成对 GaN Systems 的收购 • 英飞凌签署多年期协议,为现代/起亚供应电源半导体 • 美国国防部为北卡罗来纳州立大学牵头的“CLAWS”微电子公共区域创新中心拨款 3940 万美元 • GlobalFoundries 获得美国政府 3500 万美元资助,以加速 200 毫米 GaN-on-Si 芯片的生产 • 佛蒙特大学-GF 联盟被指定为技术中心 • Element Six 入选美国国防部 LADDIS 计划 • 首款 JEDEC 标准顶部冷却表面贴装 TOLT GaN晶体管 • 东京农工大学和日本酸素公司通过MOVPE实现高纯度Ga 2 O 3薄膜的高速生长 材料和加工设备新闻 27 Riber的MBE 49 GaN将与MOCVD竞争200mm GN-on-Si • ELEMENT 3–5的ACCELERATOR 350K为批量生产提供单晶AlN • Aehr的收入同比几乎翻了一番 LED新闻 32 Mojo Vision的A轮融资几乎翻了一番,达到4350万美元 • NS Nanotech获得100万美元NSERC资助,用于开发纳米级LED和激光器 • ams OSRAM筹集22.5亿欧元以满足2025/26年的融资需求 光电子新闻 38 SuperLight Photonics在与DeepTechXL和oost NL的投资轮中获得种子资金 光通信新闻 40 ECOC 2023的新闻 • Coherent和Kinetic延长合作伙伴关系以启用网络边缘的 100G 服务 • OpenLight 与 Spark 合作扩展设计服务 • imec 推出 SiGe BiCMOS 光接收器,总数据速率达到 200Gbps 光伏新闻 50 NREL 创下 D-HVPE 生长的单结 GaAs 电池 27% 的效率记录
-2 ) >10 >10 0.5 5 ~1 ? v 峰值 (10^7 cm/s) 1 0.7 2 2.5 2.7 ? E 临界 (MV/cm) 0.15 0.3 3 3.3 5.6 15 热导率 (W/cm K) 0.6 1.5 3.3-4.5 2 20 21 RF Johnson 的 FOM = E 临界 *v 峰值 0.7 1.0 29 39 72 ? 功率 Baliga 的 FOM = mn * E 临界 ^3 0.5 1.0 443 1441 4460 5698
摘要:光学模拟计算相较于传统数字计算具有并行计算、速度快、能耗低的天然优势。目前,片上光学模拟计算领域的研究主要集中在经典数学运算上,尽管量子计算具有诸多优势,但基于超表面的片上量子模拟器件尚未被展示。本文基于绝缘体上硅(SOI)平台,设计了一种特征尺寸为60×20 µm 2 的片上量子搜索器。利用经典波模拟基于叠加原理和干涉效应的量子搜索算法,同时结合片上超表面实现调制能力。当入射波聚焦在标记位置时,即可找到标记项,这与量子搜索算法的效率完全相同。所提出的片上量子搜索器有利于基于波的信号处理系统的小型化和集成化。
半导体技术依赖于通过在半导体基质材料的晶格中控制引入替代杂质(掺杂)来调整基板的电性能的能力,以便调整其电子、光学和/或磁性。1 然而,目前的原位掺杂策略不能轻易扩展到纳米级。随着半导体器件的尺寸缩小到纳米级,半导体内单个原子的标准随机分布变得至关重要,因为均匀掺杂分布的假设不再成立。2,3 目前,科学界正在努力开发一种新技术,以展示纳米级半导体结构的确定性掺杂。传统的掺杂技术主要基于离子注入,即用高能含掺杂剂的离子轰击目标半导体,随后使用高温热处理诱导离子替换晶格中的原子。 1 该技术的主要优势在于可以独立控制半导体主体内的掺杂剂量和杂质原子的深度分布。这种方法已被广泛探索,并已成为微电子领域的主力,因为它可以保证大面积的出色掺杂均匀性。
摘要:微光机电系统(MOEMS)结合了微机电系统(MEMS)和微光学的优点,能够实现独特的光学功能,具有广泛的先进应用。硅基 MOEMS 通过简单的外部机电控制方法,如静电、磁或热效应,实现精确的动态光调制。本文简要回顾了硅基 MOEMS 的技术与应用,简要介绍了其基本工作原理、优点、常用材料和微加工制造技术,并介绍了微镜/微镜阵列、微光谱仪、光学/光子开关等先进硅基 MOEMS 器件的研究进展。由于硅基 MOEMS 在空间光调制和高速信号处理方面的独特优势,它们在光通信、数字光处理和光传感方面有着广泛的应用前景。最后对Si基MOEMS未来的研究和发展前景进行了展望。
[25] Shi K W,Yow K Y,LoC。单束和多光束激光槽过程参数开发和40 nm节点的模具特性 - k/ulk Wafer [C]∥2014IEEE 16th 16th Electronics包装技术会议(EPTC),2014年12月3日至5日,2014年12月3日,新加坡。纽约:IEEE出版社,2015:752-759。
DOI: 10.7498/aps.71.140101 类脑计算技术作为一种脑启发的新型计算技术 , 具有存算一体、事件驱动、模拟并行等特征 , 为 智能化时代开发高效的计算硬件提供了技术参考 , 有望解决当前人工智能硬件在能耗和算力方面的 “ 不可持续发展 ” 问题 . 硬件模拟神经元和突触功能是发展类脑计算技术的核心 , 而支持这一切实现 的基础是器件以及器件中的物理电子学 . 根据类脑单元实现的物理基础 , 当前类脑芯片主要可以分 为数字 CMOS 型、数模混合 CMOS 型以及新原理器件型三大类 . IBM 的 TrueNorth 、 Intel 的 Loihi 、清华大学的 Tianjic 以及浙江大学的 Darwin 等都是数字 CMOS 型类脑芯片的典型代表 , 旨 在以逻辑门电路仿真实现生物单元的行为 . 数模混合型的基本思想是利用亚阈值模拟电路模拟生物 神经单元的特性 , 最早由 Carver Mead 提出 , 其成功案例有苏黎世的 ROLLs 、斯坦福的 Neurogrid 等 . 以上两种类型的类脑芯片虽然实现方式上有所不同 , 但共同之处在于都是利用了硅基晶体管的 物理特性 . 此外 , 以忆阻器为代表的新原理器件为构建非硅基类脑芯片提供了新的物理基础 . 它们 在工作过程中引入了离子动力学特性 , 从结构和工作机制上与生物单元都具有很高的相似性 , 近年 来受到国内外产业界和学术界的广泛关注 . 鉴于硅基工艺比较成熟 , 当前硅基物理特性是类脑芯片 实现的主要基础 . 忆阻器等新原理器件的类脑计算技术尚处于前沿探索和开拓阶段 , 还需要更成熟 的制备技术、更完善的系统框架和电路设计以及更高效的算法等 .