碰撞率。虽然当前的方法倾向于评估计划轨迹的碰撞率[1-5,7],但在现有方法中的定义和实施中都存在问题。首先,在开环的最终自动驾驶中,其他代理不会引起自我汽车的反应。相反,他们严格遵守预定的轨迹。因此,这导致碰撞率的计算偏差。第二个问题源于以下事实:当前方法产生的计划预测仅由一系列轨迹点组成。因此,在最终碰撞计算中,不考虑自我汽车的偏航角。替代,假定它保持不变。此假设导致错误的结果,特别是在转弯场景中,如图1。当前实施中也存在问题。每个样本的碰撞率的当前定义是:
- 平均位移误差(ADE) - 最终位移误差(FDE) - 碰撞率 - 舒适分数 - PDM分数[Note]
b'我们表明,与激光散斑相关的质动力可以以类似于库仑散射的方式散射激光产生的等离子体中的电子。给出了实际碰撞率的解析表达式。电子散斑碰撞在高激光强度或 \xef\xac\x81lamentation 期间变得重要,\xef\xac\x80影响长脉冲和短脉冲激光强度范围。例如,我们 \xef\xac\x81 发现国家点火装置空腔激光重叠区域中的实际碰撞率预计将超过库仑碰撞率一个数量级,从而导致电子传输特性发生根本变化。在短脉冲激光-等离子体相互作用的高强度特性下( I \xe2\x89\xb3 10 17 Wcm \xe2\x88\x92 2 ),散射足够强,导致激光能量直接吸收,产生能量缩放为 E \xe2\x89\x88 1 . 44 I/ 10 18 Wcm \xe2\x88\x92 2 1 / 2 MeV 的热电子,接近实验观察到的结果。 PACS 数字: PACS 数字。'
自主驾驶是一项复杂而具有挑战性的任务,旨在通过场景和推理来实现安全的运动计划。最近,通过增强的场景理解,几个关键问题,包括缺乏推理,低概括性能和长尾场景,但仍需要戴着几个关键问题,但仍需要进行一些关键问题。在本文中,我们提出了VLP,这是一个新颖的视力 - 语言规划框架,利用语言模式来弥合语言理解与自动驾驶之间的差距。VLP通过加强源内存基础和自动驾驶汽车的上下文理解来增强自主驾驶系统。vlp通过与先前的最佳方法相比,分别在平均L2错误和碰撞率方面,分别在平均L2错误和碰撞率方面实现了35.9%和60.5%的端到端规划表演。此外,在面对新的城市环境时,VLP在挑战性的长尾方案和强大的概括能力方面表现出改善的性能。
自主驾驶是一项复杂而具有挑战性的任务,旨在通过场景和推理来实现安全的运动计划。最近,通过增强的场景理解,几个关键问题,包括缺乏推理,低概括性能和长尾场景,但仍需要戴着几个关键问题,但仍需要进行一些关键问题。在本文中,我们提出了VLP,这是一个新颖的视力 - 语言规划框架,利用语言模式来弥合语言理解与自动驾驶之间的差距。VLP通过加强源内存基础和自动驾驶汽车的上下文理解来增强自主驾驶系统。vlp通过与先前的最佳方法相比,分别在平均L2错误和碰撞率方面,分别在平均L2错误和碰撞率方面实现了35.9%和60.5%的端到端规划表演。此外,在面对新的城市环境时,VLP在挑战性的长尾方案和强大的概括能力方面表现出改善的性能。
摘要我们提出了一种大型语言模型(LLM)的ChatScene-利用LLM的能力来为自动驾驶汽车的安全至关重要方案。给定的非结构化语言指令,代理首先使用LLMS生成文本描述的流量方案。这些SCE-NARIO描述随后被分解为几个子描述,以获取指定的细节,例如行为和车辆的位置。代理然后将文本描述的子筛选性转换为特定于域的语言,然后在模拟器中生成用于预测和控制的实际代码,从而促进了Carla Simulation Envimonment中的不同和复杂场景的创建。我们代理的关键部分是一个全面的知识检索组件,它通过训练包含情景描述和代码对的知识数据库来有效地将特定的文本描述转化为相应的特定领域代码段。广泛的实验结果强调了Chatscene在提高自动驾驶汽车安全性方面的功效。对于Intance,ChatScene产生的方案显示,与最先进的基线相比,在针对不同的基于强化的基于学习的自我车辆进行测试时,碰撞率增加了15%。此外,我们表明,通过使用我们生成的安全 - 关键方案来微调不同的基于RL的自主驾驶模型,它们可以降低碰撞率9%,超过Cur-Current Sota方法。代码可在https://github.com/javyduck/chatscene上找到。ChatScene有效地弥合了交通情况的文本描述与实际CARLA模拟之间的差距,从而提供了一种统一的方式,以方便地生成安全至关重要的方案,以进行安全测试和改进AVS。
摘要。自动驾驶(AD)的数据驱动方法在过去十年中已被广泛采用,但面临着数据集偏见和无法解释性。受到人类驾驶的知识驱动性质的启发,最近的方法探讨了大型语言模型(LLMS)的潜力,以改善交通情况中的理解和决策。他们发现,使用经过三通链(COT)推理过程的下游数据上LLM的预处理范式可以增强可解释性和场景的理解。,这种流行的策略被证明遭受了臭名昭著的概率,而精制的婴儿床与随之而来的决策不符,而这种决策仍未受到以前基于LLM的AD方法的影响。为了解决这个问题,我们激励了基于多模式的LLM的端到端决策模型,该模型同时执行COT推理并执行计划结果。fur-hoverore,我们提出了配对的婴儿床和计划结果之间的推理决策对准约束,并在推理和决策之间施加了对应关系。此外,我们重新设计了COTS,以使模型能够理解复杂的方案并增强决策绩效。我们将建议的大型语言规划师与推理决策对齐为RDA驱动器。对Nuscenes和Drivelm-Nuscenes基准的实验评估证明了我们的RDA驱动器在增强最终AD系统性能方面的有效性。具体来说,我们的RDA驱动程序在Nuscenes数据集上实现了最先进的计划性能,具有0.80 L2误差和0.32的碰撞率,并且在挑战Drivelm-nuscenes基准方面取得了领先的结果,具有0.82 L2 L2误差和0.38碰撞率。
寻找超对称粒子是大型强子对撞机 (LHC) 的主要目标之一。超对称顶部 (停止) 搜索在这方面发挥着非常重要的作用,但 LHC 下一个高光度阶段将达到前所未有的碰撞率,这对任何新信号与标准模型背景的分离提出了新的挑战。量子计算技术提供的大规模并行性可以为这个问题提供有效的解决方案。在本文中,我们展示了缩放量子退火机器学习方法的一种新应用,用于对停止信号与背景进行分类,并在量子退火机中实现它。我们表明,这种方法与使用主成分分析对数据进行预处理相结合,可以产生比传统多元方法更好的结果。
摘要。近年来,已经在自动驾驶中调查了大型视力和语言模型(VLM),以解决长期存在的问题,包括推理,概括和长尾方案。但是,将VLM的有效整合到自主驾驶框架中仍然是一个悬而未决的问题。在本文中,我们提出了VLP,这是一个新颖的视觉语言规划框架,它利用了大型视觉语言模式来弥合语言理解与自动驾驶之间的差距。VLP是一种训练方法,它通过提出对比度学习目标来提炼VLM的力量到端到端模块化自主驾驶。在开路和闭环任务上进行了广泛的实验,验证了VLP的实用性。尤其是,VLP通过与先前的最佳方法相比,分别在平均L2错误和碰撞率方面,在Nuscenes数据集上实现了状态的端到端计划绩效。
OCP2013在2031年增加了渥太华的骑自行车模式的目标(即在绿带和5%的城市宽度内,自行车进行的全早峰期旅行的比例明显高于OCP2008全班高峰时段旅行的3%目标。它还引入了渥太华不同地区内部自行车模式共享的更具体的目标(第3章)。短途旅行提供了扩大自行车旅行数量的最大机会,尤其是在密集的内部区域,大约一半的旅行短于4公里。在郊区,该市将专注于改善与学校,社区中心,就业区和其他当地目的地的骑自行车路线的联系。为了跟踪朝着这些模式共享目标的进度,该市将致力于改善其对自行车活动的监控。该市还监视每次旅行的骑自行车碰撞率,自2005年以来一直在下降。