简介 磁阻效应最广为人知的是计算机硬盘的读取头或磁存储器 (MRAM) 应用,但它也非常适合用于传感器技术。它有着悠久的历史,各向异性磁阻 (AMR) 效应于 1857 年由开尔文勋爵首次发现。AMR 效应发生在铁磁材料中,例如结构为条带元素的镍铁层,其比阻抗随施加磁场的方向而变化。由于条带的特殊结构,电阻变化与施加的磁场在很宽的范围内成正比。这意味着通过巧妙设计传感器结构,可以非常高精度地检测非常小的磁场。
第 3 章 图 3.1:铁氧体定子铁芯的横截面。尺寸以毫米为单位。 图 3.2:具有改进槽的定子铁芯的横截面。 图 3.3:可能的 16/16 定子-转子极配置,从而产生单相 SRG。 图 3.4:(a) 预期电感曲线和 (b) 预期电流波形。针对图 3.3 中的机器。 图 3.5:可能的 16/8 定子-转子极配置。两相机器。为高速 SRG 选择的几何形状。 图 3.6:可能的 16/12 定子-转子极配置,从而产生四相机器。 图 3.7:与磁通路径相关的基本术语。 图 3.8:所选几何形状的转子层压件的横截面。尺寸以毫米为单位。 图 3.9:(a) 一个定子槽中可用于绕组的空间。(b) 定子极的顶视图。图 3.10:考虑扩展定子极弧的 SRG 相电感曲线。图 3.11:SRG 准线性模型的 `P-i-O 特性。图 3.12:完全打开的平顶电流波形示例。8d1y 5.3°,和 0,=27.8°。图 3.13:完全打开的电流波形示例的 EC 环路。