生物陶瓷领域已成为各种医疗和牙科应用的重要组成部分,磷酸钙 (CaP) 材料如磷酸三钙 (TCP) 引起了广泛关注。CaP 生物陶瓷因其出色的生物相容性、骨传导性和促进新骨形成的能力而受到重视,这使得它们在优化牙科植入物的整合和性能方面具有不可估量的价值。这项研究探索了一种开发多功能 CaP 基陶瓷的新方法,该方法可利用机器学习 (ML) 建模技术的强大功能,应用于制药、牙科甚至古代文物保存领域。磷酸三钙是一种被广泛研究的 CaP 陶瓷,是这项研究的重点,因为它可以制造出不同程度的结晶度和孔隙率,以定制其生物降解和骨再生特性。通过使用前馈人工神经网络 (FFANN),研究人员能够预测牙科陶瓷、生物相容性和组织反应在广泛的无毒性和骨骼生长参数范围内的变化。 FFANN 建模方法提供了有关这些关键属性之间关系的宝贵见解,从而可以优化基于 CaP 的陶瓷以用于特定的临床和保存应用。TCP 的多功能性不仅限于牙科植入物,还可用于牙周再生、牙根修复甚至直接牙髓封盖手术。通过操纵材料的成分和微观结构,研究人员和临床医生可以定制 CaP 生物陶瓷的性能,以满足医疗保健和文化遗产部门的不同需求。随着生物陶瓷领域的不断发展,先进的 ML 建模技术(例如本研究采用的 FFANN 方法)的集成有望为开发创新的、组织友好的陶瓷开辟新的可能性,从而彻底改变牙科、药物配方和珍贵古代文物的保存。
目的:原发性家族性脑钙化(PFBC)是一种罕见的神经变性疾病,其特征是基底神经节中的小血管钙化。pFBC是由不同基因的致病变异引起的,其生理病理学仍然很少知道。皮肤血管钙化,这表明钙沉积可能不限于大脑,但未知这是否是所有PFBC遗传和临床亚型的标志。这项工作旨在评估来自PFBC患者的皮肤活检中钙 - 磷酸盐沉积物的解剖和亚细胞定位,以确定与健康对照组(HC)和帕克森氏病(PD)区分PFBC中组织学钙染色的准确性。方法:来自20个PFBC,7 HC和10个PD受试者的皮肤活检的组织病理学和光学显微镜(3mmø - 5 mm深打孔活检,苏木精 - 曙红和vonkossa染色,免疫 - 过氧化物酶CD31染色);临床,遗传和放射学评估。结果:与HC和PD受试者不同,大多数PFBC患者(17/20)在基础层中表现出颗粒状的芳香钙磷酸钙 - 基础层含量的固定模式,以及CD31 + CD31 +内皮细胞的细胞质和杂质杂质的cd31 +内皮细胞的细胞质和杂质的杂种和杂种杂种。这种模式与潜在的突变基因或临床状况无关。解释:皮肤活检可能是一种新型的PFBC诊断工具,并且是未来疗法的潜在生物标志物,也是研究PFBC疾病机制的工具。某些患者的不同发现可能是由于皮肤采样变异性和特定PFBC基因变异的生物学后果。
背景:基因治疗的概念形成于 20 世纪 60 年代,随着首批人体临床研究的批准,基因治疗在 1989-1990 年迎来了转折点。美国食品药品监督管理局 (FDA) 对基因治疗的定义是,通过核酸、病毒或基因工程微生物施用遗传物质。本综述探讨了基因治疗的历史发展和现状,重点关注其在牙科领域的应用。材料和方法:利用 PubMed、MEDLINE、Scopus 和 Web of Science 数据库进行了全面的叙述性文献检索。使用了与基因治疗、CRISPR/Cas 技术和牙科相关的关键词和 MeSH 术语。纳入标准包括过去 10 年的英文出版物,特别关注基因治疗或 CRISPR/Cas 在牙科领域的应用。数据合成涉及批判性评价和相关信息的提取。结果:基因转移是基因治疗的基石,它涉及通过将转基因载体注射到体内或体外靶细胞中来修改缺陷基因。各种方法,包括物理(电穿孔、微注射)和化学(磷酸钙、脂质体)方法,都有助于基因修饰。牙科应用范围从治疗鳞状细胞癌和干燥综合征等疾病到增强骨再生、植入和治疗慢性疼痛。结论:基因治疗和 CRISPR/Cas 技术在牙科领域的潜力巨大,可提供创新的个性化治疗干预措施。然而,必须解决诸如伦理考虑和长期疗效研究的需要等挑战,以确保这些技术对口腔保健实践产生变革性影响。未来有望实现牙科保健的范式转变,基因疗法将引领更有效和更有针对性的治疗。关键词:CRISPR/Cas 技术、牙科基因组编辑、基因治疗、口腔健康。牙科先进研究杂志 (2024): 10.5005/djas-11014-0033
牙本质生成始于成牙本质细胞,成牙本质细胞合成并分泌非胶原蛋白 (NCP) 和胶原蛋白。当牙本质受伤时,牙髓祖细胞/间充质干细胞 (MSC) 可以迁移到受伤区域,分化为成牙本质细胞并促进反应性牙本质的形成。牙髓祖细胞/MSC 分化在给定的生态位中受到控制。在牙齿 NCP 中,牙本质唾液酸磷蛋白 (DSPP) 是小整合素结合配体 N 连接糖蛋白 (SIBLING) 家族的成员,该家族的成员具有共同的生化特征,例如 Arg-Gly-Asp (RGD) 基序。DSPP 表达具有细胞和组织特异性,在成牙本质细胞和牙本质中高度常见。DSPP 突变会导致遗传性牙本质疾病。 DSPP 在蛋白水解作用下被催化成牙本质糖蛋白 (DGP)/唾液酸蛋白 (DSP) 和磷蛋白 (DPP)。DSP 进一步加工成活性分子。DPP 包含 RGD 基序和丰富的 Ser-Asp/Asp-Ser 重复区。DPP-RGD 基序与整合素 αVβ3 结合,并通过丝裂原活化蛋白激酶 (MAPK) 和粘着斑激酶 (FAK)-ERK 通路激活细胞内信号传导。与其他 SIBLING 蛋白不同,DPP 在某些物种中缺乏 RGD 基序。然而,DPP Ser-Asp/Asp-Ser 重复区与磷酸钙沉积物结合,并通过钙调蛋白依赖性蛋白激酶 II (CaMKII) 级联促进羟基磷灰石晶体生长和矿化。DSP 缺乏 RGD 位点,但含有信号肽。信号域的三肽与内质网内的货物受体相互作用,促进 DSPP 从内质网运输到细胞外基质。此外,DSP 的中间和 COOH 末端区域与细胞膜受体、整合素 β6 和闭合蛋白结合,诱导细胞分化。本综述可能揭示 DSPP 在牙发生过程中的作用。
摘要 纳米技术是本世纪初发展迅速的先进科学领域。先进材料、聚合物的纳米技术主要围绕在亚原子水平上设计材料以在自然可见的水平上实现诱人的特性和应用的努力。纳米技术可用于技术进步,从通信和信息、健康和医学、未来能源、环境和气候变化到交通和文化遗产、个人防护设备 (PPE)、燃料、燃料电池、生物传感器、疾病传感器等。纳米材料将带来一种制造材料和设备的新方法。更快的计算机、先进的药物、受控药物输送、生物相容性材料、神经和组织修复、防裂表面涂层、更好的皮肤护理和保护、更高效的催化剂、更好更小的传感器、甚至更高效的电信。例如,一种使用抗体修饰的铋纳米粒子的低风险解决方案,结合与胸部 X 光剂量相当的 X 光,已被证明可以杀死常见的细菌铜绿假单胞菌,其装置设计为模拟人体组织中的深层伤口。纳米金粒子可以比以前已知的任何物质更好地催化一氧化碳的氧化。肝素功能化纳米粒子已被用于抗疟疾药物的靶向输送。与涉及抗体的治疗相比,肝素丰富且价格低廉,这是一个重要的考虑因素,因为疟疾在发展中国家最为常见。已经开发出一种骨修复纳米粒子糊剂,有望更快地修复骨折和断裂。含有两个生长基因的 DNA 被封装在合成的磷酸钙纳米粒子内。在纳米工程极限的一次非凡展示中,研究人员使用扫描隧道显微镜的尖端切割并形成复杂分子中的选定化学键。许多医药和工业领域都已使用纳米技术。纳米颗粒可以附着在 SARS COV-2 病毒上,破坏其结构,从而杀死病毒。这些以及其他纳米技术的最新进展将在本次会议上展示。
骨质疏松症会严重降低骨密度并增加骨折风险,是对全球健康的重大挑战。补钙和运动等传统治疗方法在完全预防骨折方面的效果有限。本综述探讨了最近在手术技术和治疗方式方面的进展,以更好地治疗骨质疏松性骨折并改善患者的预后。由于骨质量受损,骨质疏松性骨折需要专门的手术技术。椎体成形术和椎体后凸成形术是微创手术,使用骨水泥快速缓解疼痛并提供结构支撑。虽然椎体成形术有效,但它存在骨水泥渗漏和新骨折的风险。椎体后凸成形术加上球囊充气,可降低渗漏风险并改善椎体高度恢复,但成本较高。骨水泥增强螺钉可增强固定,但会增加邻近骨折的风险并引起长期并发症。外科手术的进步包括机器人辅助手术,提供精准度和加速恢复,以及骨形态发生蛋白 (BMP) 等生物制剂,可增强骨骼愈合,同时减少二次干预并消除供体部位发病率。磷酸钙水泥等骨移植替代品可增强生物力学相容性,降低发病率,减少骨折损失和疼痛。球囊后凸成形术有助于恢复身高和缓解疼痛,并降低随后发生椎骨骨折的风险。生物玻璃支架通过提高骨密度和降低新骨折的发生率来促进骨再生。最佳围手术期护理,包括患者选择、营养管理和早期活动策略,对于减轻弱势群体的风险至关重要。虽然目前的外科手术干预措施可显著缓解疼痛并带来功能益处,但持续的研究和多学科合作对于前瞻性地改进这些技术并减轻骨质疏松症的负担至关重要。组织工程和基因编辑等新技术具有未来治疗模式的潜力。
Pikovskaya 琼脂 预期用途 Pikovskaya 琼脂用于检测溶解磷酸盐的土壤微生物。 摘要 磷酸盐在土壤中以有机和无机形式存在。来自死亡和腐烂植物残骸的有机物富含有机磷源。然而,植物只能以游离形式利用土壤中的磷。土壤磷酸盐由植物根部或土壤微生物提供。因此,溶解磷酸盐的土壤生物在纠正农作物缺磷方面发挥着作用。 Sundara Rao 和 Sinha 改良了 Pikovskaya 琼脂,用于检测土壤中溶解磷酸盐的细菌。 原理 培养基中的酵母提取物提供氮和其他营养物质,以支持细菌生长。葡萄糖作为能量来源。不同的盐和酵母提取物支持生物的生长。溶解磷酸盐的细菌将在此培养基上生长,并在菌落周围形成一个透明区域,这是由于菌落附近的磷酸盐溶解而形成的。配方* 成分 g/L 酵母提取物 0.5 葡萄糖 10.0 磷酸钙 5.0 硫酸铵 0.5 氯化钾 0.2 硫酸镁 0.1 硫酸锰 0.0001 硫酸亚铁 0.0001 琼脂 15.0 最终 pH(25°C 时) 7.0 ± 0.2 *根据性能参数进行调整。 储存和稳定性 将脱水培养基储存在密闭容器中,温度低于 30°C,将配制好的培养基储存在 2°C-8°C 下。避免冷冻和过热。请在标签上的有效期前使用。开封后,请将粉末培养基密闭,以免受潮。 样本采集和处理 对于临床样本,请按照既定指南遵循适当的样本处理技术。对于食品和乳制品样本,请按照既定指南遵循适当的样本处理技术。对于水样,请按照既定指南和当地标准采用适当的技术处理样本。应在施用抗菌剂之前获取样本。使用后,受污染的材料必须通过高压灭菌器进行灭菌,然后才能丢弃。说明
真菌对磷酸盐的溶解是陆地生态系统养分循环的重要过程,尤其对于植物生长发育必需的元素磷的可用性而言。磷通常以不溶性形式存在于土壤中,例如铁、铝和钙的无机磷酸盐,这限制了植物根部对其的吸收。然而,磷酸盐溶解真菌能够通过分泌有机酸和磷酸酶将可用的磷酸盐释放到环境中,将这些不溶性形式转化为植物可利用的磷酸根离子。该机制不仅在植物营养方面发挥着关键作用,而且在陆地生态系统的可持续性方面也发挥着关键作用,有助于有效的磷循环和提高农业生产力。本研究的目的是通过巴西亚马逊西部微生物收集中心的三种具有散生菌目形态特征的真菌菌株,对不同磷酸盐源的溶解能力进行分子鉴定和表征。首先,重新激活这些细胞系,并使用 2% CTAB 方法进行 DNA 提取。接下来,进行 CaM(钙调蛋白)区域的扩增,作为物种鉴定的分子标记,然后进行测序和系统发育分析。为了确保分析的稳健性,基于相关物种序列的比对,采用了最大似然法,并进行了 1000 次重复。为了评估无机磷酸盐的溶解潜力,在含有三种不同形式的不溶性磷酸盐的培养基中对分离物进行体外定性测试:磷酸铁(FePO₄)、磷酸铝(AlPO₄)和磷酸钙(Ca₃(PO₄)₂)。将真菌在28°C的恒温下培养四天。磷酸盐的溶解度通过溶解指数来量化,该指数是一个参数,表示真菌在培养基中在其菌落周围产生溶解晕的能力。该指数是根据溶解晕的直径与真菌菌落直径的比率计算得出的。系统发育分析证实,所研究的三种菌株属于 Talaromyces sayulitensis 种。在进行的测试中,Talaromyces sayulitensis 菌株表现出溶解不同来源的无机磷酸盐的高潜力,在所有测试介质中呈现溶解晕。在含有磷酸铝(AlPO₄)的培养基中观察到最高的溶解率。这些结果表明,Talaromyces sayulitensis 具有显著的溶解各种形式磷酸盐的能力,作为一种有前途的生物技术工具,它可以提高贫瘠土壤中磷的利用率,促进植物生长,并有助于可持续农业实践。
6。药物特定:6.1摄取剂清单:DI碱性磷酸钙BP淀粉淀粉BP甲基羟基苯甲酸酯钠BP丙基羟基苯甲酸酯钠BP纯化的滑石BP硬脂酸镁硬脂酸镁胶结BP胶体胶体二氧化碳二氧化碳二氧化硅BP跨povidone povidone povidone syl 010 potass int in 10亚甲基二氯化体BP ISO丙醇BP 6.2不兼容:没有报告6.3货架寿命:从制造之日起36个月。6.4特殊的存储预防措施:存储在凉爽,干燥和黑暗的地方。保护光。6.5容器的性质和内容:1000片包装在一个罐子中。6.6处置的特殊预防措施:没有报告。7。注册人:Agog Pharma Ltd。情节号33,II区,Vasai Taluka工业合作社。 庄园有限公司,Gauraipada,Vasai(E),Dist。 Thane,印度。 8。 制造商:Agog Pharma Ltd。 情节号 33,II区,Vasai Taluka工业合作社。 庄园有限公司,Gauraipada,Vasai(E),Dist。 Thane,印度。 9。 文本的修订日期:33,II区,Vasai Taluka工业合作社。庄园有限公司,Gauraipada,Vasai(E),Dist。 Thane,印度。 8。 制造商:Agog Pharma Ltd。 情节号 33,II区,Vasai Taluka工业合作社。 庄园有限公司,Gauraipada,Vasai(E),Dist。 Thane,印度。 9。 文本的修订日期:庄园有限公司,Gauraipada,Vasai(E),Dist。Thane,印度。 8。 制造商:Agog Pharma Ltd。 情节号 33,II区,Vasai Taluka工业合作社。 庄园有限公司,Gauraipada,Vasai(E),Dist。 Thane,印度。 9。 文本的修订日期:Thane,印度。8。制造商:Agog Pharma Ltd。情节号33,II区,Vasai Taluka工业合作社。 庄园有限公司,Gauraipada,Vasai(E),Dist。 Thane,印度。 9。 文本的修订日期:33,II区,Vasai Taluka工业合作社。庄园有限公司,Gauraipada,Vasai(E),Dist。 Thane,印度。 9。 文本的修订日期:庄园有限公司,Gauraipada,Vasai(E),Dist。Thane,印度。 9。 文本的修订日期:Thane,印度。9。文本的修订日期:
二氧化钛(TIO 2)最近引起了极大的关注,这主要是由于骨科和纳米材料科学的交集。这种感兴趣的激增可以归因于良好的理解,即Ti金属在暴露于大气条件时会经历表面氧化,最终导致外部面上强大的天然Tio 2层的形成。诸如阳极氧化等技术进一步增强了这一过程,从而导致了在生物学上兼容和成骨的钝化表面涂层的发展。纳米材料化学的进步在该结构域中至关重要,从而使TIO 2结构的受控组装(包括纳米纤维和纳米管)具有受控组装。此外,已经确定了特定的合成方法,可以产生具有分层结构的钛酸簇,这有利于磷灰石形成 - 天然骨组织的无机复合物。也值得注意的是,二氧化钛具有反应并转化为钛纳米管或纳米线的能力。这种特征已被证明是有益的,因为它已被证明可以促进与体液的离子交往相互作用,从而支持骨组织生长。具体来说,当将钛材料放入模拟的体液中时,离子交换开始并鼓励羟基磷灰石的产生,羟基磷灰石是天然骨的基本成分。纳米材料化学丰富了这一研究领域,许多实验室已经研究了结构控制TIO 2的形态,例如纳米纤维和纳米管[11,12]。这种产生的离子层结构作为阳离子储层起着至关重要的作用。已经确定了合成方法中的进步来产生钛酸盐材料,这些材料由它们的粘土状晶格(由边缘共享TIO TIO 6八面体组成)与阳离子实体散布在一起[13]。这种分层结构特别有利于模拟体液(SBF)中的磷灰石形成。更具体地说,涉及粉状TIO 2矿物质的热液反应,例如假酶和氧化钠或氢氧化钾溶液,会根据反应条件而产生Na-或K- titanate纳米管或纳米线。它有助于体液中发现的阳离子的离子交换,因此自主维持阳离子平衡原位,这对于骨组织生长至关重要。在SBF环境中,Na/k- titanate和钙(Ca 2+)之间的浓度梯度促使具有Ca 2+的单价Na +或K +离子的离子交换。这为随后的相互作用设定了阶段:磷酸盐阴离子的协调{即(PO 3)3-,(HPO 3)2-和(H 2 PO 3) - 从体液与泰坦酸盐结合的Ca 2+的体液中的(H 2 PO 3) - }。这种相互作用的顶点是形成水合磷酸钙或羟基磷灰石的形成,羟基磷灰石是天然骨的必不可少的基础[13]。