阿尔茨海默病 (AD) 是第三大最昂贵的疾病和第六大死亡原因。它与神经斑块 (NPs) 中细胞外淀粉样蛋白-β (A β ) 的沉积以及形成神经原纤维缠结 (NFTs) 的细胞内过度磷酸化的 tau 蛋白有关。作为调节 AD 神经炎症的新靶点,髓细胞触发受体 2 (TREM2) 在小胶质细胞表面高度且专门表达。TREM2 与衔接蛋白 DAP12 相互作用,启动主要主导小胶质细胞表型和吞噬作用移动性的信号通路。此外,TREM2 基因突变会增加 AD 风险,而 TREM2 缺陷会导致神经斑块周围更多的树突棘损失。近年来,调节 TREM2 以缓解 AD 的机制已成为 AD 研究的一个领域。目前针对 A β 或 tau 蛋白的药物无法逆转 AD 进展。新兴证据表明神经炎症可能提供新的见解,因为早期小胶质细胞相关炎症可以在 AD 相关认知损伤开始前几十年诱发。体育锻炼可以在 AD 进展过程中发挥神经保护作用。本综述旨在 (1) 总结 AD 的发病机制和该领域的最新进展,(2) 评估 AD 认知障碍与小胶质细胞相关炎症密切相关的概念,以及 (3) 回顾 TREM2 的功能及其在运动和 AD 之间的作用,这可能是理想的候选靶点。
摘要阿尔茨海默氏病的病理生理学仍然是一个难题。越来越多的证据阐明了氧化应激参与AD的病理学,使其成为治疗性发育的主要靶标。由线粒体功能改变,电子传输链失调和其他来源产生的活性氧(ROS)提升了凝集的Aβ和神经原纤维缠结,从而进一步刺激了ROS的产生。氧化应激引起对脂质,蛋白质和DNA的损伤导致神经元死亡,从而导致AD。此外,氧化应激会诱导凋亡,这是由ERK1/2和NRF2途径的调节触发的,随后GSK-3β表达增加并降低了PP2A活性。氧化应激通过干扰RCAN1,CREB/ ERK,NRF2,PP2A,NFκB和PI3K/ AKT等各种信号通路来夸大疾病状况。研究报道了TNF-α在氧化应激刺激中的作用,该抗氧化剂刺激的作用增强了抗氧化剂水平。据报道,其他药物如普拉己烯,美金刚,卡维丝醇和褪黑激素可以激活CREB/RCAN1和NRF2途径。与此相一致,epigallocatechin Gallate和Genastein还靶向NRF2和CREB途径,从而导致下游途径(如AS和KEAP1)的激活,这些途径可以改善氧化应激条件。多奈酮和白藜芦醇减少氧化应激,并激活AMPK途径以及PP2A激活,从而促进tau去磷酸化和神经元存活。本研究详细描述了氧化应激在AD中的作用,涉及氧化应激诱导的AD的主要信号通路和正在针对这些途径的开发中的药物,这些途径可能有助于AD的治疗进展。
摘要 导致帕金森病 (PD) 和阿尔茨海默病 (AD) 的神经退行性疾病已成为全球主要的健康负担。目前的治疗主要针对控制症状,临床实践中没有可用的治疗方法来预防神经退行性疾病或诱导神经元修复。因此,对这两种疾病进行新的研究的需求迫在眉睫。本文献综述旨在提供有关 PD 和 AD 的已发表文献以及内源性大麻素系统 (ECS) 作为神经退行性疾病的潜在药物靶点的当前用途。PD 通常用左旋多巴和深部脑刺激治疗。最近的基因修饰和重塑技术,例如通过人类胚胎干细胞和诱导多能干细胞的 CRISPR,已显示出个性化医疗的有希望的策略。AD 以细胞外淀粉样β-老年斑沉积和 tau 蛋白神经原纤维缠结为特征,通常使用胆碱乙酰转移酶增强剂作为治疗剂。目前,ECS 正在作为 PD 和 AD 药物靶点进行研究,其中 ECS 受体的过度表达可发挥针对 PD 的神经保护作用并减少 AD 中的神经炎症。大麻植物中的 delta-9-四氢大麻素 (Δ9-THC) 和大麻二酚 (CBD) 大麻素已显示出对 PD 和 AD 动物模型的神经保护作用,但直接给药时会对患者产生毒性作用。因此,建议了解大麻素治疗后的精确分子级联,特别关注基因表达以确定预防和修复神经退行性疾病的药物靶点。
阿尔茨海默氏病(AD)和阿尔茨海默氏病有关的痴呆症(ADRD)是痴呆症的主要原因,对生活质量具有毁灭性影响,并且对医疗保健系统是巨大的经济负担。大脑中细胞外β-淀粉样蛋白(Aβ)斑块和细胞内的高磷酸化神经原纤维缠结(NFT)的积累是AD的标志。他们也被认为是AD随附的炎症,神经退行性,脑萎缩和认知障碍的根本原因。发现APP,PS1和PS2突变的发现,这些突变会增加具有早期发作家族AD的家族的Aβ产生,从而发展了许多AD的转基因啮齿动物模型。这些模型为Aβ在AD中的作用提供了新的见解。但是,它们没有完全复制患者的AD病理。家族性AD患者具有升高Aβ产生的突变的家族性AD患者仅占痴呆症患者的一小部分。相比之下,患有零星的晚期AD的人构成了大多数病例。这一观察结果以及先前针对Aβ或TAU的临床试验的失败以及使用Aβ单克隆抗体的最新试验的适度成功,导致重新评估了Aβ积累是AD发病机理的唯一因素。最近的研究表明,脑血管功能障碍是AD中最早的变化之一,与AD相关的候选基因中有67%在脑血管中表达。因此,对AD的血管贡献越来越多,美国国家衰老研究所(NIA)和阿尔茨海默氏病基金会最近将其优先为重点研究领域。本综述总结了最常用的转基因AD动物模型的优势和局限性,以及有关Aβ积累与脑血管功能障碍在AD发病机理中的贡献的当前观点。
摘要:系统性阿尔茨海默病 (AD) 是一种在老龄人口中日益流行的神经退行性疾病。AD 的病理特征包括 β-淀粉样蛋白 (A β ) 斑块积聚、tau 神经原纤维缠结形成、氧化应激、胆碱能系统受损和神经炎症。许多治疗药物已通过针对这些病理机制来减缓 AD 的进展。然而,多奈哌齐和美金刚等合成药物通常会导致副作用。在此背景下,海藻作为营养来源和潜在的健康改善代谢物来源引起了人们的关注。研究表明,褐色大型藻类提取物可以通过抑制促炎细胞因子表达来潜在地减少与神经退行性疾病相关的炎症。此外,它们的生物活性化合物表现出对抗氧化应激至关重要的抗氧化特性。抗氧化剂,主要是类胡萝卜素和酚类化合物,通过清除自由基的能力保护神经元细胞,与改善认知功能和降低神经退行性疾病风险有关。此外,某些大型藻类中发现的 omega-3 脂肪酸具有支持大脑健康和认知功能的潜力,进一步增强了它们的神经保护作用。总之,本综述全面评估了过去五年对棕色大型藻类进行的研究,涵盖了它们的潜在生物活性化合物、获取这些化合物的方法以及它们对 AD 的神经保护特性。文献中临床研究数量有限,凸显了进一步研究的必要性。本叙述性综述为神经保护策略的新方法提供了一个基本框架,例如与棕色大型藻类天然资源相关的方法。此外,它们可能在开发功能性食品和营养保健品方面发挥越来越重要的作用,这些食品和保健品可以支持人类健康,预防和管理神经退行性疾病。
在人口老龄化的背景下,阿尔茨海默病(AD)问题日益严重,对人类构成了巨大挑战。尽管在AD病因探索方面已经取得了长足的进展,即淀粉样斑块和神经原纤维缠结在AD进展中的重要作用已被科学界广泛接受,但传统的治疗和监测方式存在很大的局限性。因此,需要出现新的阿尔茨海默病评估和治疗方式。在本研究中,我们试图回顾基于功能性近红外光谱(fNIRS)和脑电图(EEG)监测的数字化治疗的有效性。这项工作使用关键词方法搜索了四个电子数据库,并重点关注以AD和老年认知为重点的期刊。最终纳入了21篇文章。回顾了AD数字化治疗和结果监测的进展,包括不同平台上的数字治疗方法和不同的神经监测技术。由于θ相干性、α和β节律、氧合血红蛋白等生物标志物可有效监测AD患者的认知水平,从而监测数字疗法的疗效,本综述特别关注数字疗法的生物标志物验证结果。结果表明,基于生物标志物监测的数字治疗具有良好的疗效,其疗效体现在数字治疗前后EEG和fNIRS监测到的生物标志物指标的数值变化上。这些指标数值的增加或减少共同指向认知功能的改善(大多为中等到较大的效应量)。该研究首次从多模态监测的角度研究了AD数字治疗的现状,拓宽了AD疗效的研究视角,为临床治疗师提供了一份治疗方案的“参考清单”。他们可以从这个“参考清单”中选择特定的方案,以便根据个体患者的需求定制数字疗法。
摘要:为了阐明Aβ病理对小胶质细胞在阿尔茨海默氏病发病机理中的影响,我们在用Aβ原纤维治疗后介绍了小胶质细胞表面体。我们的发现表明,与Aβ相关的人类小胶质细胞上调了Glypican 4(GPC4),GPI锚定了硫酸乙酰肝素蛋白聚糖(HSPG)。在果蝇淀粉样变性模型中,神经胶质GPC4表达加剧了运动缺陷并降低了寿命,这表明神经胶质GPC4在神经变性过程中有助于有毒的细胞程序。在细胞培养中,GPC4增强了Tau聚集体的小胶质细胞吞噬作用,而SHED GPC4可以作用于反式,以促进tau骨料的摄取并在神经元中播种。此外,我们的数据表明,在APOE的存在下,GPC4介导的效应会放大。这些研究提供了一种机械框架,该框架通过小胶质细胞HSPG和APOE连接了Aβ和TAU病理。关键字:神经变性,阿尔茨海默氏病,痴呆,小胶质细胞,星形胶质细胞,淀粉样蛋白,tau,apoe,播种,果蝇。简介:阿尔茨海默氏病的定义病理特征是β-淀粉样蛋白(Aβ)斑块和Tau神经原纤维缠结的积累。1,2啮齿动物和人类研究表明,Aβ加速了大脑网络中Tau病理的传播,这可能是通过局部和远程淀粉样蛋白TAU相互作用3-8加速。的确,抗Aβ单克隆抗体,lecanemab和Donanemab,减少了阿尔茨海默氏病(AD)患者Tau病理学的沉积,这可能是通过去除上游淀粉样蛋白斑块而导致的。9–11然而,Aβ促进Tau病理学的扩散的细胞和分子机制仍然未知。
阿尔茨海默氏病是最常见的神经退行性疾病之一,其特征是β-淀粉样蛋白斑块和神经原纤维缠结。阿尔茨海默氏症与各种细胞变化有关,包括氧化应激,神经元炎症和线粒体疾病,最终导致神经元死亡。在洋甘菊植物中发现的黄酮醇(Matricaria recutita)由于其抗氧化剂特性而对诸如阿尔茨海默氏病等脑部疾病产生有益的作用。在这项研究中,使用柱色谱和TLC方法分离并纯化了洋甘菊甲醇提取物(M. recutita)的类黄酮。然后使用光谱方法(例如1H-NMR,13C-NMR,Mass和ir)提取,分离和鉴定来自类黄酮化合物的黄酮醇。56名成年雄性大鼠分为7组,包括对照(1辆,黄酮醇的溶剂和链霉菌素药物的溶剂),阿尔茨海默氏症和120、250和400 mg/kg的黄酮剂量。糖尿病,并施用黄酮醇15天。使用穿梭盒设备评估记忆和学习。使用SPSS 22软件,ANOVA和Tukey测试进行了数据分析,其显着性设置为p≤0.05。结果表明,与对照组相比,来自洋甘菊的250和400 mg/kg黄酮醇提取物造成了重大变化,最终改善了大鼠的回避记忆。此外,在用洋甘菊黄酮醇处理的阿尔茨海默氏症组中,氧化应激参数显着降低。植物黄酮醇证明了恢复空间记忆功能并使链蛋白酶治疗组中氧化应激参数正常化的能力。关键词:阿尔茨海默氏症,类黄酮,黄酮,学习,老鼠。引言学习和记忆是中枢神经系统的基本功能,代表动物与环境相互作用的过程。记忆包括学习信息的编码,存储和检索(Josselyn和Tonegawa,2020年)。阿尔茨海默氏病是一种与衰老相关的神经退行性疾病,其特征是各种认知
小胶质细胞在淀粉样β(Aβ)斑块附近被激活,但是小胶质细胞是否有助于β向未受影响的大脑区域的β传播仍然未知。使用野生型(WT)神经元的转移,我们表明β进入WT移植物,并且伴随着小胶质细胞浸润。小胶质细胞功能的操纵减少了移植物中的β沉积。此外,体内成像将小胶质细胞鉴定为先前未受影响的组织中β病理的载体。因此,我们的数据主张迄今未探索β传播的机制。β的聚集是阿尔茨海默氏病(AD)发病机理中必不可少的早期触发因素,导致神经原纤维缠结,神经元功能障碍和痴呆1。由于它们与β斑块2-4的密切关联,已经提出了几种细胞类型的因果关系,包括小胶质细胞,包括小胶质细胞。在大脑中形成β斑块后,小胶质细胞与它们建立了亲密的接触并成为反应性5,6。那些活化的小胶质细胞已通过β摄取与牙菌斑的生长有关,然后是小胶质细胞死亡7、8。我们的小组和其他人最近在β播种9 - 11中牵涉到小胶质细胞,但它们在传播β病理学中的作用仍然难以捉摸。在支持“致病性扩散”假设12中,先前的移植实验表明,源自跨基因宿主组织的β能够入侵并沉积在非转基因移植物中,从而导致神经变性13 - 15。1a,b和扩展数据图1a,b)13。1A和扩展数据图然而,β扩散到WT移植物中的机制尚不清楚,并且迄今尚未证明细胞介导的机制。在这项研究中,我们将wt小鼠的胚胎神经元细胞移植到了年轻的,前置前的5xfad trans-transic小鼠的新皮细胞中,确认了移植到宿主组织中以及几个月内的移植物的存活(图。在移植后4周后立即存在β斑块,它们随着时间的推移而增加(图。1a – c,黄色箭头)。我们首先假设App/Aβ被前进运输
阿尔茨海默病 (AD) 是一种渐进性脑部疾病,其特征是记忆力、思维和身体机能下降。据估计,AD 影响了 620 万 65 岁及以上的美国人,是美国第六大死亡原因。1 阿尔茨海默病的进展分为三个阶段:(1) 临床前 AD (2) AD 导致的轻度认知障碍 (MCI) 和 (3) 阿尔茨海默病痴呆,进一步分为轻度、中度和重度。随着疾病的进展,记忆力、思维和行为会出现明显的症状变化,影响患者进行日常生活活动的能力。晚发型 AD 的风险因素包括高龄、载脂蛋白 e4 基因 (APOE-e4) 突变和 AD 家族史。早发性 AD 与几种不太常见的基因突变有关。1 没有单一的测试可用于诊断阿尔茨海默氏痴呆症,而是需要各种评估、认知测试和生物标志物共同协助诊断。2 虽然该疾病的确切机制尚未完全了解,但存在几种假设,这些假设侧重于该疾病的不同特征,包括但不限于 β-淀粉样蛋白的积累、一种名为 tau 的蛋白质的异常形成、炎症和胆碱能异常。3 当前和未来的药物靶点旨在纠正这些不平衡,最近重点关注 β-淀粉样斑块的积累和磷酸化 tau 蛋白的神经原纤维缠结。人们认为,这些斑块和缠结的积累会导致大脑神经元的损伤和死亡。4,5 阿尔茨海默病痴呆的药物治疗包括胆碱酯酶抑制剂(即多奈哌齐、利凡斯的明和加兰他敏),主要用于早期和中期 AD,以及谷氨酸拮抗剂美金刚,用于中度至重度 AD。这些治疗方法并未显示出可以阻止或减缓疾病进展,但可用于治疗该疾病的认知和功能症状。1 FDA 于 2021 年 6 月 7 日宣布批准 Aduhelm (aducanumab-avwa),这是第一个针对淀粉样蛋白-β的单克隆抗体。2023 年 1 月 6 日,FDA 批准了第二种抗淀粉样蛋白β单克隆抗体 Leqembi (lecanemab-irmb)。2024年7月2日,FDA批准了Kisunla。