抽象对象:本综述的目的是突出限制颅神经外科领域机器人发展进步的主要因素。方法:进行了文献搜索,重点介绍了用于颅神经外科使用的任何神经外科技术的公开报告。技术经过审查和评估,以了解患者的优势和缺点,以及该项目是否有效或关闭。结果:讨论了24个机器人的已发表报告,可以追溯到1985年。总共有9个机器人(PUMA,机器人手,专家,神经元,进化1,Rosa,Isys1,Neuroarm和Neuromot),而今天只有2种活动(Rosa,Neuroarm)。在所有临床活动系统中,只有30多名患者(Rosa,Isys1&Neuroarm)使用了3个。项目受到成本,技术采用和临床实用性的限制,以实际改善工作流程。开发机器人最常见的用途是用于立体定位。结论:关于机器人技术在其他手术领域的成功,颅神经外科领域有一个明显的空隙。重要因素,例如成本,技术限制,市场规模和监管途径,都促成了成功的陡峭梯度。
培训非常严格,我们很早就认识到,为了取得最佳结果,必须对患者护理的各个方面负责。我学会了最好的技术技能、判断力,可以做出明智的建议,并快速有效地评估患者的需求。这些技能在我的整个职业生涯中都适用于领导的各个方面。JEFFREY OJEMANN,医学博士
Advanced Practice Providers Michelle Acosta, DPAS, PA-C Alicia Bergell Pa-c Lauren Carroll, Pa-c Shannon Casey, CRNP Kayla CHURMA, PA-C Annette Clements, Crinp Theodora Constantine, Pa-c A mpass, pa-c a mpass. Pa-c Assandra deane, pa-c jada dooley, crnp amanda diriscoll, pa-c Julia Freyer, pa-c amanda gans, pa-c nicole gray, pa-c niholas grice, pa-c saantha gulick, pa-c chrisanne Henicke, pa-c edenice jud P kelly Jones, PA-C SARAH KWIATKOWSKI, FNP-C Lucille Lewis, MPAS, PA-C Kathleen Mannon, PA-C Hope Romonte, MPAS, PA-C CHRISTIN MELELON, PA-C Kelsey Michenko, pa-c Alexis papay, can Sesemroc, pa-c gina shaffer, pa-c Edward Shaffer, PA-C Kaila Simcoviak, PA-C Brianna Stuparitz, PA-C
诊所名称 主管 1 功能神经外科 2 小儿神经外科 3 脊柱诊所 4 血管神经外科 5 颅底外科 6. 创伤/杂项 7. 癫痫神经外科 8. 周围神经诊所 9. 其他 iii. 部门提供的服务:
4。Feng C,Deng L,Yong YY等。 生物材料在脊髓损伤中的应用。 int J Mol Sci。 2023; 24(1):816。 出版了2023年1月3日。doi:10.3390/ijms24010816 5。 Yu F,Li P,Du S等。 嗅觉分配细胞播种脱细胞支架可促进脊髓损伤大鼠的轴突再生。 J Biomed Mater Res A. 2021; 109(5):779-787。 doi:10.1002/jbm.a.37066 6。 Vatansever S,Schlessinger A,Wacker D等。 中枢神经系统疾病中的人工智能和机器学习辅助药物发现:最新的艺术和未来方向。 Med Res Rev. 2021; 41(3):1427-1473。 doi:10.1002/med.21764 7。 ÁlvarezZ,Kolberg-Edelbrock AN,Sasselli IR等。 具有增强超分子运动的生物活性支架可促进脊髓损伤的恢复。 科学。 2021; 374(6569):848-856。 doi:10.1126/science.abh3602 8。 Sangji MH,Lee SR,Sai H,Weigand S,Palmer LC,Stupp SI。 自我分级与肽两亲物超分子纳米结构中的共同组合。 acs nano。 2024; 18(24):15878-15887。 doi:10.1021/acsnano.4C03083 9。 Hendricks MP,Sato K,Palmer LC,Stupp SI。 超分子的肽两亲。 ACC CHEM RES。 2017; 50(10):2440-2448。 doi:10.1021/acs.accounts.7b00297 10。 yan L,Cui Z.整合素β1和神经系统损伤后修复。 EUR NEUROL。 2023; 86(1):2-12。 doi:10.1159/000526690Feng C,Deng L,Yong YY等。生物材料在脊髓损伤中的应用。int J Mol Sci。2023; 24(1):816。出版了2023年1月3日。doi:10.3390/ijms24010816 5。Yu F,Li P,Du S等。 嗅觉分配细胞播种脱细胞支架可促进脊髓损伤大鼠的轴突再生。 J Biomed Mater Res A. 2021; 109(5):779-787。 doi:10.1002/jbm.a.37066 6。 Vatansever S,Schlessinger A,Wacker D等。 中枢神经系统疾病中的人工智能和机器学习辅助药物发现:最新的艺术和未来方向。 Med Res Rev. 2021; 41(3):1427-1473。 doi:10.1002/med.21764 7。 ÁlvarezZ,Kolberg-Edelbrock AN,Sasselli IR等。 具有增强超分子运动的生物活性支架可促进脊髓损伤的恢复。 科学。 2021; 374(6569):848-856。 doi:10.1126/science.abh3602 8。 Sangji MH,Lee SR,Sai H,Weigand S,Palmer LC,Stupp SI。 自我分级与肽两亲物超分子纳米结构中的共同组合。 acs nano。 2024; 18(24):15878-15887。 doi:10.1021/acsnano.4C03083 9。 Hendricks MP,Sato K,Palmer LC,Stupp SI。 超分子的肽两亲。 ACC CHEM RES。 2017; 50(10):2440-2448。 doi:10.1021/acs.accounts.7b00297 10。 yan L,Cui Z.整合素β1和神经系统损伤后修复。 EUR NEUROL。 2023; 86(1):2-12。 doi:10.1159/000526690Yu F,Li P,Du S等。嗅觉分配细胞播种脱细胞支架可促进脊髓损伤大鼠的轴突再生。J Biomed Mater Res A.2021; 109(5):779-787。 doi:10.1002/jbm.a.37066 6。Vatansever S,Schlessinger A,Wacker D等。中枢神经系统疾病中的人工智能和机器学习辅助药物发现:最新的艺术和未来方向。Med Res Rev.2021; 41(3):1427-1473。 doi:10.1002/med.21764 7。ÁlvarezZ,Kolberg-Edelbrock AN,Sasselli IR等。具有增强超分子运动的生物活性支架可促进脊髓损伤的恢复。科学。2021; 374(6569):848-856。 doi:10.1126/science.abh3602 8。Sangji MH,Lee SR,Sai H,Weigand S,Palmer LC,Stupp SI。自我分级与肽两亲物超分子纳米结构中的共同组合。acs nano。2024; 18(24):15878-15887。 doi:10.1021/acsnano.4C03083 9。Hendricks MP,Sato K,Palmer LC,Stupp SI。超分子的肽两亲。ACC CHEM RES。 2017; 50(10):2440-2448。 doi:10.1021/acs.accounts.7b00297 10。 yan L,Cui Z.整合素β1和神经系统损伤后修复。 EUR NEUROL。 2023; 86(1):2-12。 doi:10.1159/000526690ACC CHEM RES。2017; 50(10):2440-2448。 doi:10.1021/acs.accounts.7b00297 10。yan L,Cui Z.整合素β1和神经系统损伤后修复。EUR NEUROL。2023; 86(1):2-12。 doi:10.1159/000526690
脑机接口 (BCI) 是神经病学和神经外科领域的一项重大技术进步,标志着自 1924 年脑电图问世以来的重大飞跃。这些接口有效地将中枢神经系统信号转换为外部设备的命令,为因中风、脊髓损伤和神经退行性疾病等多种神经系统疾病而导致严重沟通和运动障碍的患者带来革命性的好处。BCI 使这些人能够与周围环境进行交流和互动,利用他们的脑信号操作接口进行交流和环境控制。这项技术对于那些完全被困在里面的人来说尤其重要,在其他方法无法满足需求的情况下,它提供了一条沟通生命线。BCI 的优势是显而易见的,它为严重残疾患者提供了自主权并提高了生活质量。它们允许与各种设备和假肢直接互动,绕过受损或无功能的神经通路。然而,挑战依然存在,包括准确解读脑信号的复杂性、需要单独校准以及确保可靠的长期使用。此外,还需要考虑自主权、同意权以及对技术的依赖性等伦理问题。尽管存在这些挑战,BCI 仍代表着神经技术的革命性发展,有望改善患者的治疗效果并加深对脑机接口的理解。
研究过程 在手术室中,在麻醉诱导之前,将套管针(Vasofix Safety,B. Braun,德国梅尔松根)插入手背静脉。开始心电图监测,测量血压、经皮动脉血红蛋白饱和度、二氧化碳图和 BIS。进行预氧合,然后使用 MCI 或 TCI 方法诱导全静脉麻醉 (TIVA)。使用 Perfusor Space 输注泵(B. Braun,德国梅尔松根)输注瑞芬太尼(Ultiva,Aspen Pharma,南非乌姆兰加)和丙泊酚(Propofol 1% MCT/LCT,Fresenius,德国巴特洪堡)。 P-TCI 组首先输入患者的人口统计学数据(身高、性别、体重和年龄),并设定效应点初始靶浓度:Schnider 模型中丙泊酚为 4 µg/mL,Minto 模型中瑞芬太尼为 4 ng/mL。P-MCI 组首先以 1.5 mg/kg IBW 剂量推注丙泊酚,以 0.5 μg/kg IBW 剂量推注瑞芬太尼,持续 1 分钟。
礼貌:C.L。张,J.D.L。HO,V。Vardhanabhuti,H.C。 Chang,K.W。 kwok,“术中MRI引导的干预措施的无线多层跟踪标记的设计和制造”,IEEE/ASME Mechatronics上的IEEE/ASME交易,2020年。HO,V。Vardhanabhuti,H.C。 Chang,K.W。kwok,“术中MRI引导的干预措施的无线多层跟踪标记的设计和制造”,IEEE/ASME Mechatronics上的IEEE/ASME交易,2020年。