此转换过程支持离线和在线过程,并且可以完全安装。全面数据转换的估计时间为150分钟。对于在线转换,每个存储处理器一次升级一个,并且在过程中仍可以访问数据。对于离线转换,由于系统已完全关闭并且两个存储处理器的同时升级,因此在过程中将无法访问数据。通常,随着两个存储处理器同时升级,离线转换将更快地完成。客户可以根据他们的喜好选择在线或离线转换。目标模型必须与源模型相同。例如,您可以从Unity XT 480转换为Unity XT 880,但不能从Unity XT 480转换为Unity XT 480 XT 880F系统。
摘要 - 强化学习(RL)使代理商从与环境的互动期间收集的试验经验中学习。最近,离线RL已成为流行的RL范式,因为它可以节省与环境的交互。在离线RL中,数据提供商共享大型预计数据集,而其他人可以在不与环境互动的情况下训练高质量的代理。此范式在机器人控制,自动驾驶等关键任务中表现出了有效性。但是,对调查离线RL系统的安全威胁的关注更少。本文重点介绍了后门攻击,其中将一些扰动添加到数据(观察)中,以便给定正常观察,代理采取了高奖励动作,并且对注入触发器注入的观察结果进行了低奖励动作。在本文中,我们提出了B Affle(用于离线执行学习的后门攻击),这种方法通过毒化离线RL数据集自动植入后门来植入RL代理,并评估不同的离线RL算法对此攻击的反应。我们对四个任务和九个离线RL算法进行的实验表明了令人不安的事实:现有的脱机RL算法都不对这种后门攻击免疫。更具体地说,B Affle修改了10%的数据集(3个机器人控制和1个自主驾驶)。在中毒数据集中受过训练的代理在正常设置中表现良好。但是,当出现触发器时,代理的性能会大大降低63。2%,53。9%,64。7%和47。平均四个任务中的4%。在干净的数据集上微调中毒代理后,后门仍然持续。我们进一步表明,流行的防御方法也很难检测到插入后的后门。本文呼吁关注开放源离线RL数据集更有效的保护。
在在线广告中,广告商通常通过使用需求端平台(DSP)提供的自动铸造工具参加广告拍卖的广告广告机会。当前的自动铸造算法通常采用强化学习(RL)。然而,由于安全问题,大多数基于RL的自动竞标政策都经过模拟培训,从而在在线环境中部署时会导致性能退化。要缩小此差距,我们可以并行部署多个自动竞标代理,以收集大型交互数据集。然后可以利用离线RL算法来培训新的政策。随后可以部署训练有素的策略以进行进一步的数据收集,从而产生了迭代培训框架,我们将其称为迭代的离线RL。在这项工作中,我们确定了这种迭代离线RL框架的瓶颈,该框架源自离线RL算法固有的保守主义引起的无效探索和剥削。为了克服这种瓶颈,我们提出了轨迹探索和外观(TEE),它引入了一种新颖的数据收集和数据利用方法,用于从轨迹有偏见的迭代离线RL。此外,为了在保留TEE的数据集质量的同时确保在线探索的安全性,我们建议通过自适应行动选择(SEAS)进行安全探索。在阿里巴巴展示广告平台上的离线实验和现实世界实验都证明了我们提出的方法的有效性。
在离线RL中,离线数据集通常是由策略的混合物收集的,行为策略可能会表现出:•强大的多模式,•偏度,•不同动作维度之间的依赖性,这不能由对角线高斯政策很好地建模。
摘要:由于离线控制光伏 (PV) 电站不具备在线通信和远程控制系统,因此无法实时调节功率。因此,在离线控制光伏饱和的配电网中,配电系统运营商 (DSO) 应考虑可再生能源的不确定性来调度分布式能源 (DER),以防止因过压而导致的限电。本文提出了一种使用移动储能系统 (MESS) 和离线控制光伏的日前网络运行策略,以最大限度地减少功率削减。MESS 模型有效地考虑了 MESS 的运输时间和功率损耗,并模拟了各种操作模式,例如充电、放电、空闲和移动模式。优化问题基于混合整数线性规划 (MILP) 制定,考虑到 MESS 的空间和时间操作约束,并使用机会约束最优潮流 (CC-OPF) 执行。离线控制光伏的上限基于概率方法设定,从而减轻由于预测误差导致的过电压。所提出的运行策略在 IEEE 33 节点配电系统和 15 节点运输系统中进行了测试。测试结果证明了所提出方法在离线控制光伏系统中最小化限电的有效性。
此类任务同样可以先离线学习状态转移预测模 型再使用 MPC 计算控制输入 [28-29] ,或直接使用强 化学习方法 [68-69] ,但需要大量训练数据且泛化性较 差。在准静态的局部形变控制中,更常用的方法是 在线估计局部线性模型。该模型假设线状柔性体形 状变化速度与机器人末端运动速度在局部由一个雅 可比矩阵 JJJ 线性地联系起来,即 ˙ xxx ( t ) = JJJ ( t ) ˙ rrr ( t ) ,其 中 ˙ xxx 为柔性体形变速度, ˙ rrr 为机器人末端运动速度。 由于使用高频率的闭环反馈来补偿模型误差,因此 完成任务不需要非常精确的雅可比矩阵。 Berenson 等 [70-71] 提出了刚度衰减( diminishing rigidity )的概 念,即离抓取点越远的位置与抓取点之间呈现越弱 的刚性关系,并据此给出了雅可比矩阵的近似数学 表示。此外,常用的方法是根据实时操作数据在线 估计雅可比矩阵,即基于少量实际操作中实时收集 的局部运动数据 ˙ xxx 和 ˙ rrr ,使用 Broyden 更新规则 [72] 、 梯度下降法 [73] 、(加权)最小二乘法 [33-34,74] 或卡尔 曼滤波 [75] 等方法在线地对雅可比矩阵进行估计。 该模型的线性形式给在线估计提供了便利。然而, 雅可比矩阵的值与柔性体形状相关,因此在操作 过程中具有时变性,这使得在线更新结果具有滞 后性,即利用过往数据更新雅可比矩阵后,柔性体 已经移动至新的形状,而新形状对应的雅可比矩阵 与过往数据可能并不一致。同时,完整估计雅可比 矩阵的全部元素需要机器人在所有自由度上的运 动数据,这在实际操作过程中难以实现,为此一些 工作提出根据数据的奇异值进行选择性更新或加 权更新 [74] 。此外,此类方法需要雅可比矩阵的初 值,一般在操作前控制机器人沿所有自由度依次运 动,收集数据估计初始位置的雅可比矩阵。受上述 问题影响,在线估计方法往往仅适用于局部小形变 的定点控制,难以用于长距离大形变的轨迹跟踪。 Yu 等 [31] 提出 ˙ xxx = JJJ ( xxx , rrr ) ˙ rrr 的模型形式,其中 JJJ ( · ) 为 当前状态至雅可比矩阵的非线性映射,待估计参数 为时不变形式。基于该模型,该方法将离线学习与 在线更新无缝结合,实现了稳定、平滑的大变形控 制。 Yang 等 [76-77] 使用模态分析方法建立柔性体模
离线:选拔过程的所有阶段应完全离线,候选人必须来校园并参加选择过程。在线:根据便利性,通过MS团队,G-Meet等通过视频会议进行视频会议,甄选过程的所有阶段均应在线。在没有选择的阶段,候选人需要来到校园。混合:选择过程的某些阶段应在线,并且选择过程的某些阶段应离线。在每个阶段,甄选过程应在线或离线的所有候选人入围该阶段。也就是说,在一个特定阶段,不允许在线进行一个候选人的选择,并脱机另一个候选人。
该研究的目的是比较传统和移动学习环境中思维映射的有效性。该研究探讨了使用在线学习平台时传统的离线学习活动(包括思维映射)是否可以改善。思维映射用于创业课程,用于推出初创公司以集思广益并提出商业想法。这项研究于2020年进行,涉及271名本科医学生,在保加利亚索非亚大学和俄罗斯第一莫斯科州立药用大学学习。实验的结果表明,在传统的离线环境中学习的学生与使用移动设备的学生相比表现更好。已经考虑了移动学习的一般概念。因此,该方法使学生能够选择解决各种问题的最合适的设备。为了提高教育过程中思维映射的有效性,可以离线和在线执行任务。获得的结果的实际意义在于,他们允许选择最有效的离线和移动学习技术来制作思维地图。
摘要 - 离线目标条件的强化学习(GCRL)的目的是通过脱机数据集的稀疏重新解决目标解决目标任务。虽然先前的工作已经阐明了代理商学习近乎最佳策略的各种方法,但在处理复杂环境(例如安全限制)中处理各种约束时,这些方法会遇到限制。其中一些方法优先考虑目标,而无需考虑安全性,而其他方法则以牺牲培训效率为代价而过度关注安全性。在本文中,我们研究了限制离线GCRL的问题,并提出了一种称为基于恢复的监督学习(RBSL)的新方法,以完成具有各种目标的安全至关重要的任务。为了评估方法性能,我们基于具有随机定位的障碍物的机器人提取环境建立基准测试,并使用专家或随机策略来生成离线数据集。我们将RBSL与三种离线GCRL算法和一种离线安全RL算法进行比较。结果,我们的方法在很大程度上可以执行现有的最新方法。此外,我们通过将RBSL部署在真正的熊猫机械手上来验证RBSL的实用性和有效性。代码可在https://github.com/sunlighted/rbsl.git上找到。
技术创新和消费者偏好的升级极大地加速了“新零售”全渠道模型的快速发展。满足消费者期望的个性化和无缝的互动体验,需要整合离线和在线渠道的优势,并扩展集成和智能的全渠道布局。这已经成为一个迫切需要解决的复杂问题。为了解决此问题,我们对离线商店和电子商务部门之间的购买店内和店内定价游戏进行了研究,考虑到诸如匹配概率和网络回报成本之类的因素。更重要的是,我们提出了在此策略下的店内和返回(BORO)策略(BORO)策略(BORO)策略,并对离线商店和电子商务部门的市场份额和收入水平的差异进行了分析。结果是:(i)仅在距离成本中等时,BOPS的全渠道战略才能增加离线商店和电子商务部门的收入; (ii)与电子商务部门相比,Boro战略为离线商店提供了更大的好处; (iii)Boro策略的有效性受匹配概率,距离成本和产品回报等因素的影响。这项研究不仅为全渠道品牌商人的战略渠道管理提供了理论基础,还提供了实用的见解。