摘要。雷达无疑是战场上最重要的传感器,可用于对飞行器进行预警和跟踪。采用 AESA 火控雷达的现代战斗机能够捕获和跟踪远距离目标,距离可达 50 海里或更远。然而,低可观测或隐形技术的普及对雷达能力提出了挑战,将其探测/跟踪范围缩小了大约三分之一。战斗机雷达的这种退化更为严重,因为大多数隐形威胁都针对更高的频段进行了优化,例如火控雷达的情况。因此,电磁频谱的其他部分已被重新考虑,例如红外辐射 (IR)。由于燃料燃烧、空气动力摩擦和红外反射,每架飞机都是红外源。这样,喷气式战斗机就可以在寒冷的天空背景下被红外传感器探测到。因此,IRST 系统重新出现,为雷达提供了替代方案。除了目标探测能力(无论是否隐身)之外,IRST 系统还具有被动操作、抗干扰能力和更好的角度精度。另一方面,它们容易受到天气条件的影响,尤其是潮湿,同时它们不能像雷达那样直接测量距离。本文探讨和比较了 AESA 雷达和 IRST 系统这两种方法的能力和局限性,也对传感器融合的优势提供了一些见解。
摘要。本文介绍了旋转风扇、压缩机和涡轮叶片诊断的综合方法。关键的低速和高速旋转流体流动机械(风扇、蒸汽涡轮机和航空喷气发动机)面临机械损坏(由异物和侵蚀引起)、腐蚀和其他形式的材料疲劳(LCF、HCF、VHCF、TMF)的风险。叶片质量变化(沉积物的影响)和材料各向异性率导致模态特性变化,这些物体面临危险。为了监测叶片的实际运行状况和技术状态,采用了旋转叶片观察器方法(叶尖定时方法)。受监控的旋转叶片排和磁阻传感器的组合创建了一种编码器,其输出信号同时包含以下信息:- 由空气动力和质量力输入引起的叶片振动;- 瞬时转子转速;- 转子不平衡和振动;- 磁阻传感器与振动和旋转叶片的耦合条件。测量值是叶片到达固定观察者(安装在装配外壳上的磁阻传感器)的时间 (TOA)。TOA 受非周期性(瞬时理想转子转速)和周期性分量(叶片和转子振动)调制。TOA 的测量是通过频率法实现的,可用于典型的计数器卡和 AD/DA 转换器。利用记录(非均匀采样)数据的数值处理来分离 TOA
摘要 - 风洞 (WT) 是一种人工产生相对于静止物体的气流并测量空气动力和压力分布的装置,模拟实际情况,其重要方面是准确模拟流体流动的全部复杂性。本研究的目的是设计一个小型、开路(也称为埃菲尔型)和亚音速(低速)风洞 (WT) 的三维几何形状,能够展示或充当航空力学研究的重要工具。该项目和制造本身是一项繁重的任务,其焦点/中心主题是描绘/描述风洞组件,例如测试部分、收缩锥、扩散器、驱动系统和沉降室。本文还描述了 WT 的历史、类型、重要性和应用,旨在作为解剖/详细分析。引用了大量有关 CFD(计算流体动力学)的信息,这是一门研究如何通过求解数学方程来预测流体流动、传热、化学反应和其他现象的科学,并将其与湍流模型结合使用,以获得正确和理想的 Open WT,并验证流体流动的性能。通过分析风洞中的速度分布模式、压力分布和流体湍流强度来进行 CFD。CFD 可以洞察使用流量台架测试无法捕捉到的微小流动细节。还讨论了所采用的设计、预示流体流动的数学、遵循的指导方针、获得的结果和进一步的范围。
在控制蒸发率的两个高地集水区(苏格兰高地巴尔奎德的 Kirkion 和 Monachyle)中研究了高地造林对水资源空间变异性的影响。这些 4.确定在典型的苏格兰高地集水区中,两种不同形式的降水量和土地利用的综合影响。最初的土地利用目标是:a. 人工林 b. 粗放放牧 1.复制和扩展 Plynlimon 关于水资源的径流、沉积物和营养负荷的研究,从而确定造林对苏格兰高地本土植被(通常是粗放型高地水资源)数量和质量的影响。草和石楠,在空气动力学上比在威尔士发现的短草更粗糙。报告了集水区监测和站点的结果以及过程研究的分布和类型。土地利用降水也不同;变化——在 Monachyle 造林和 Kirkton 砍伐——在 2 中进行了评估。制定和改进它们对高地集水区水蒸发模型的影响的应用术语;产量、河流流量和沉积物负荷。使用标准技术进行分析 - 3。为了确定独特和现有模型中的季节性差异,并开发了土地利用变化对森林,石南花和草地以及径流之间影响的模型,包括雪况。
2023年12月关于Ecopulse项目▪Ecopulse是由Daher,Safran和Airbus开发的分布式混合推进飞机演示器,目的是在飞行中首次验证混合电动电动分布式推进系统的操作。▪这种高度破坏性的架构可以显着减少未来飞机的CO 2排放,并支持到2050年净零排放的航空业目标。▪ecopulse示威者是基于Daher提供的TBM飞机,该飞机配备了混合电动推进系统,并使用空中客车的空气动力和声学整合专业知识,并配备了Safran提供的六个电动螺旋桨。空中客车公司还开发了高能密度电池,该电池将用作六个螺旋桨的电源。▪该项目将提高我们对分布式推进系统,ePropeller,高压电池的了解以及飞机中高压的集成,为将来的电动和混合动力飞机铺平了道路。▪ecopulse项目获得了法国“计划保留”,法国民航局(DGAC),CORAC(民航研究委员会)和欧盟的支持。示威者Daher上的活动负责空中客车和Safran在TBM平台机体上提供的组件的飞机集成。他们与适航当局进行了允许的讨论,进行飞行测试并协调总体结果分析。Safran设计和提供混合电气推进系统(电池除外),包括:
摘要:为研究上下旋翼干扰效应以及进给比、轴倾斜角和升力偏移对缩比同轴刚性旋翼系统气动性能的影响,对缩比同轴刚性旋翼系统在悬停和稳定前飞过程中的气动性能进行了实验研究。旋翼系统采用直径2 m、四叶片上下无铰链旋翼,安装在同轴旋翼试验台上。实验在中国空气动力研究与发展中心(CARDC)的φ3.2 m风洞中进行。旋翼系统在0°~13°的总距范围内进行了悬停测试,并在进给比高达0.6的情况下进行了前飞测试,重点关注了轴倾斜角和升力偏移扫掠。为了使共轴旋翼的运行方式与实际飞行方式相似,悬停飞行时将扭矩差调整为零,前飞时保持恒定升力系数。在同轴旋翼中以相同的螺距角设置进行了孤立单旋翼配置试验。悬停试验结果表明,下旋翼的品质因数 (FM) 值低于上旋翼,且均低于孤立单旋翼。此外,在相同的叶片载荷系数 (C T / σ) 下,同轴旋翼配置可以获得更好的悬停效率。前飞时,有效升阻比 (L/De) 为
1.事实信息 ......................。。。。。。。。。。。。。。。。。。。。。。。。....1 1.1 飞行历史 .................。。。。。。。。。。。。。。。。。。。。。。。。..............1 1.2 人身伤害 ..........。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。6 1.3 飞机损坏。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。6 1.4 其他损坏。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。7 1.5 人员信息。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。7 1.5.1 船长 .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。................7 1.5.1.1 飞行员和模拟机教练对机长的面试 ........。。。。。8 1.5.2 副驾驶 .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。..........9 1.5.2.1 飞行员和模拟器教练对副驾驶的面试 ........10 1.6 飞机信息 ...。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。10 1.6.1 动力装置。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。11 1.6.2 系统。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。11 1.6.3 维护记录。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。13 1.7 气象信息。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。13 1.8 导航辅助设备。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。14 1.9 通讯。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。14 1.10 机场信息。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。14 1.10.1 空中交通管制。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。14 1.11 飞行记录仪。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。16 1.11.1 驾驶舱录音机。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。16 1.11.2 飞行数据记录器。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。17 1.12 残骸和影响信息。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。17 1.12.1 发电厂.。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。18 1.12.2 系统。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。18 1.13 医疗和病理信息。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。19 1.14 火灾。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。19 1.15 生存方面。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。19 1.16 测试和研究。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。19 1.16.1 飞机性能研究。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。19 1.16.1.1 爬升到 41,000 英尺。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。19 1.16.1.2 空气动力失速和翻转事件。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。21 1.16.1.3 下降和滑翔性能。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。22 1.16.2 驾驶舱录音机研究。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。24 1.16.3 发动机测试。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。26 1.16.4 负载控制阀仿真研究。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。27 1.17 组织和管理信息。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。28 1.17.1 地面学校和模拟器训练。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。28
背景 A380 配备有低速保护系统,可提供防失速保护,飞行员无法超越该系统。因此,必须调整 JAR 25 变更 15 的要求以考虑此失速保护功能。需要一个特殊条件。以下特殊条件也适用于空客 SA 和 LR 系列,允许将 JAR 25 要求调整为适用于空客飞机上使用的技术。特殊条件 1.定义此特殊条件涉及 A380 的新特点,并使用了 JAR 25 中未出现的术语。应适用以下定义: - 高迎角保护系统:直接自动操作飞机飞行控制装置的系统,将可达到的最大攻角限制为低于会发生空气动力失速的值。 - Alpha-floor 系统:当攻角增加到特定值时,自动增加运行发动机推力的系统。 - 阿尔法极限:在高入射保护系统运行且纵向控制保持在其后部停止的情况下,飞机稳定的最大攻角。 - V min:在高入射保护系统运行时,所考虑的飞机配置中的最小稳定飞行速度。请参阅本特殊条件的第 3 节。 - V min1g:V min 已校正为 1g 条件。请参阅本特殊条件的第 3 节。这是最小校准空速
桥梁的抖振、颤振和倒塌、高层建筑和风力涡轮机叶片的流体激励振动以及飞机机翼的颤振等现象。FSI 分析对于各种飞机部件(尤其是机翼)的高效轻量化结构非常重要。在这个项目中,我们设计了一个缩小的矩形平面机翼模型,并希望对机翼进行静态分析,以确定作用于机翼的空气动力、应力和各种模式的频率。随后,我们在耦合模式下进行了分析,并将其与之前获得的结果进行了比较,以观察流动模式以及当机翼被视为柔性时结构的行为方式。关键词:流体结构相互作用、CFD、耦合、机翼、柔性。1.引言 流体结构相互作用是流体动力学和结构力学定律之间的多物理场耦合。FSI 现象的特点是可变形或移动的物体与周围流体之间的相互作用。这些相互作用可以是稳定形式,也可以是振荡形式。当结构存在于流体流动中时,流体流动会对固体施加应力和应变,这些力会导致结构变形。产生的变形可能大或小,具体取决于流动的特性,例如压力和速度。流体引起的固体结构变形反过来又会影响流体的流动和压力场,变形会导致流动特性的变化,因此流体结构相互作用是流体动力学和结构力学之间的耦合。
°C:摄氏度 A/P:自动驾驶仪 A/T:自动油门 A/T SPD:自动油门速度 A/TC:自动油门计算机 AAIB:航空事故调查科 AAM:自动驾驶仪执行器监视器 ACL:授权、条件和限制 AD:适航指令 ADC:大气数据计算机 ADI:姿态指引指示器 ADS-B:广播式自动相关监视 飞机:一种动力驱动的重于空气的飞机,其飞行中的升力主要来自于在给定的飞行条件下保持固定的表面上的空气动力反应。AFCS:自动飞行控制系统 AFDS:自动驾驶飞行指引系统 AFML:飞机飞行维护日志 AFS:自动飞行系统 AIP:航空信息出版物 飞机:任何能够从空气对地球表面的反作用以外的空气反作用中获得大气支撑的机器 ALARP:尽可能低 ALERFA:用于指定警戒阶段的代码词 ALoS:可接受的安全等级 ALT ACQ:获得的高度 ALT HOLD:高度保持 AML:飞机维护日志 AMM:飞机维护手册 AMO:核准维护组织 AMP:飞机维护程序 AMPM:飞机维护程序手册 AOA:攻角 AOC:航空运营商证书 AOG:地面飞机 APM:飞机程序手册
