节点功能。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>2个节点组件。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>3控制按钮LCD显示器连接电池 /电池。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。4连接电磁阀。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。5到线直流电磁阀到节点,将节点安装到阀门(图1)安装节点。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。6连接天气传感器。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。6设置日期和时间空闲模式。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。7运行模式。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。7编程。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。7设置浇水开始时间设定运行时间设定浇水天数,选择奇数/偶数天数,选择间隔天数,以供水设置季节性调整,将系统关闭手动浇水传感器操作高级编程功能。。。。。。。。。。。。。。。。。。。。。。。。。。12传感器旁路轻松检索内存设置主阀操作(Node-200,Node-400,&Node-600)可编程(最多99天)
操作标准化。操作标准化的目的是减少生产不同部件所需的操作数量。这也会减少所需工具和设备的数量。每台机器的操作类型的减少会减少单台机器的设置时间,从而最大限度地提高运行时间与空闲时间的比率。为了便于标准化组件和操作,工程师应使用标准组件并系统地查阅机械手册,这些手册是工程选择的参考[11]。设置时间分析。减少设置时间对于解决严重影响生产过程灵活性的问题至关重要。应用 Shingo 的 SMED(单分钟模具更换[12])方法,丰田将压力机的设置时间从几个小时缩短到几分钟。较低的设置时间是实现有效重复制造流程的必要条件,也是实现 2 级和 3 级目标的主要因素之一。装卸时间分析。减少装卸时间(在自动化工厂中指码垛和卸垛时间)旨在最大限度地提高运行时间与装卸时间之间的比率。减少这些时间的措施与工件几何形状、所用夹具和自动装卸设备有关。柔性制造系统 (FMS) 的装卸时间减少可以减少操作员数量并影响托盘传送带的大小。更一般地说,通过使用自动装载机减少通用机床上装卸时间的措施不得导致设置时间增加,否则会降低机器的灵活性。防错装置。防错装置,字面意思是万无一失的装置,旨在避免人为错误,从而提高工作质量和安全性。防错装置的许多应用示例都出现在混合型号生产线中,在这些生产线中,交替使用不同的型号可能会导致频繁的装配错误。
5.2.13. 显示反转关闭(20H) ...................................................................................................... 41 5.2.14. 显示反转打开(21H) ...................................................................................................... 42 5.2.15. 所有像素关闭(22H) ...................................................................................................... 43 5.2.16. 所有像素打开(23H) ...................................................................................................... 44 5.2.17. 显示关闭(28H) ............................................................................................................. 45 5.2.18. 显示打开(29H) ............................................................................................................. 46 5.2.19. 撕裂效果线关闭(34H) ............................................................................................. 47 5.2.20. 撕裂效果线打开(35H) ............................................................................................. 48 5.2.21.显示访问控制(36H) ................................................................................................ 49 5.2.22. 空闲模式关闭(38H) ................................................................................................ 50 5.2.23. 空闲模式开启其他模式关闭(39H) ................................................................................ 51 5.2.24. 接口像素格式(3AH) ............................................................................................. 52 5.2.25. 写入撕裂扫描线(44H) ............................................................................................. 53 5.2.26. 读取扫描线(45H) ............................................................................................. 54 5.2.27. 写入撕裂扫描线宽度(46H) ............................................................................................. 55 5.2.28. 读取撕裂扫描线宽度(47H) ............................................................................................. 56 5.2.29. 写入显示亮度值(51H) ............................................................................................. 57 5.2.30.读取显示器亮度值(52h)..................................................................................... 58 5.2.31. 写入 CTRL 显示值(53H) ........................................................................................ 59 5.2.32. 读取 CTRL 显示值(54H) ........................................................................................ 60 5.2.33. 读取显示器 ID1(DAH) ............................................................................................. 61 5.2.34. 读取显示器 ID2(DBH) ............................................................................................. 62 5.2.35. 读取显示器 ID3(DCH) ............................................................................................. 63 5.2.36. 在 SPI 模式下读取 EXTC 命令(F8H) ............................................................................. 64 5.2.37. EXTC 命令设置使能寄存器 (FFH) .......................................................................... 65 5.3. 客户命令列表及说明 ...................................................................................... 68 5.3.1. WRMADC_EN:0Ah .............................................................................................. 68 5.3.2. RGB 接口控制:23h ......................................................................................... 68 5.3.3. vcom_adj:38H ~ 3Ah ........................................................................................... 69 5.3.4. PADCTRL1: 48H .................................................................................................... 74 5.3.5. BOOST_CTRL1~4 :80h~83h ............................................................................. 74 5.3.6. EXTPW_CTRL1~3:90H~92H ............................................................................. 77 5.3.7. PUMP_CTRL1~4:98H~9BH............................................................................. 79 5.3.8. RDEXTCSPI:F8H................................................................................................................ 83 5.3.9. ENEXTC:FFH ................................................................................................................ 84 5.3.10。 PGAMVR0~5;PAMPR0~1;PGAMPK0~9;GAMP0:B0H~C2H......................... 87 5.3.11. NGAMVR0~5;NAMPR0~1;NAMPK0~9;GAMN0:D0H~E2H ................................ 88 5.3.12. ENEXTC:FFH ...................................................................................................... 89 5.3.13 GIP_VST_1~12:00H~0BH ........................................................................................ 100 5.3.14. GIP_VEND_1~14:20H~2DH ................................................................................ 101 5.3.15. GIP_CLK_1~8:30H~37H ................................................................................... 102 5.3.16. GIP_CLKA_1~10:40H~49H ........................................................................... 103 5.3.17. GIP_CLKB_1~10:50H~59H ........................................................................... 104 5.3.18. GIP_CLKC_1~10:60H~69H ........................................................................... 105 5.3.19. GIP_ECLK1~2:70H~71H ........................................................................... 106................................................................................ 74 5.3.6. EXTPW_CTRL1~3:90H~92H ................................................................................ 77 5.3.7. PUMP_CTRL1~4:98H~9BH...................................................................................... 79 5.3.8. RDEXTCSPI:F8H................................................................................................................ 83 5.3.9. ENEXTC:FFH ................................................................................................................ 84 5.3.10。 PGAMVR0~5;PAMPR0~1;PGAMPK0~9;GAMP0:B0H~C2H......................... 87 5.3.11. NGAMVR0~5;NAMPR0~1;NAMPK0~9;GAMN0:D0H~E2H ................................ 88 5.3.12. ENEXTC:FFH ........................................................................................................... 89 5.3.13 GIP_VST_1~12:00H~0BH .................................................................................... 100 5.3.14. GIP_VEND_1~14:20H~2DH ................................................................................ 101 5.3.15. GIP_CLK_1~8:30H~37H .................................................................................... 102 5.3.16. GIP_CLKA_1~10:40H~49H ........................................................................... 103 5.3.17. GIP_CLKB_1~10:50H~59H ........................................................................... 104 5.3.18. GIP_CLKC_1~10:60H~69H ........................................................................... 105 5.3.19. GIP_ECLK1~2:70H~71H .................................................................................... 106................................................................................ 74 5.3.6. EXTPW_CTRL1~3:90H~92H ................................................................................ 77 5.3.7. PUMP_CTRL1~4:98H~9BH...................................................................................... 79 5.3.8. RDEXTCSPI:F8H................................................................................................................ 83 5.3.9. ENEXTC:FFH ................................................................................................................ 84 5.3.10。 PGAMVR0~5;PAMPR0~1;PGAMPK0~9;GAMP0:B0H~C2H......................... 87 5.3.11. NGAMVR0~5;NAMPR0~1;NAMPK0~9;GAMN0:D0H~E2H ................................ 88 5.3.12. ENEXTC:FFH ........................................................................................................... 89 5.3.13 GIP_VST_1~12:00H~0BH .................................................................................... 100 5.3.14. GIP_VEND_1~14:20H~2DH ................................................................................ 101 5.3.15. GIP_CLK_1~8:30H~37H .................................................................................... 102 5.3.16. GIP_CLKA_1~10:40H~49H ........................................................................... 103 5.3.17. GIP_CLKB_1~10:50H~59H ........................................................................... 104 5.3.18. GIP_CLKC_1~10:60H~69H ........................................................................... 105 5.3.19. GIP_ECLK1~2:70H~71H .................................................................................... 10650H~59H ........................................................................... 104 5.3.18. GIP_CLKC_1~10:60H~69H ......................................................................... 105 5.3.19. GIP_ECLK1~2:70H~71H ........................................................................... 10650H~59H ........................................................................... 104 5.3.18. GIP_CLKC_1~10:60H~69H ......................................................................... 105 5.3.19. GIP_ECLK1~2:70H~71H ........................................................................... 106
级别 1 — 操作标准化。操作标准化的目的是减少生产不同部件所需的操作数量。这也会减少所需的工具数量和设备数量。每台机器的操作类型减少会减少单台机器的设置时间,从而最大限度地提高运行时间与空闲时间的比率。为了促进标准化组件和操作的任务,工程师应使用标准组件并系统地查阅机械加工手册,这些手册是工程选择的参考[11]。设置时间分析。减少设置时间对于解决严重影响生产过程灵活性的问题至关重要。应用 Shingo 的 SMED(单分钟模具更换[12])方法,丰田得以将压力机的设置时间从几个小时缩短到几分钟。较短的设置时间是实现有效重复制造流程的必要条件,也是实现 2 级和 3 级目标的主要因素之一。装卸时间分析。减少装卸时间(在自动化工厂中指码垛和卸垛时间),旨在最大限度地提高运行时间与装卸时间之间的比率。减少这些时间的措施与工件几何形状、所用夹具和自动装卸设备有关。柔性制造系统 (FMS) 的装卸时间减少可减少操作员数量,并影响托盘传送带的尺寸。更一般地说,旨在减少通用机床上装卸时间的操作(通过使用自动装载机实现)不得导致设置时间增加,否则会降低机器的灵活性。防错装置。防错装置,字面意思是万无一失的装置,旨在避免人为错误,从而提高工作质量和安全性。在混合型号生产线中可以找到许多防错装置的应用示例,其中交替使用不同的型号可能会导致频繁的装配错误。
目的:BCI(脑部计算机界面)技术以三种模式运行:在线,OfflINE和伪内线。在在线模式下,经常分析实时脑电图数据。在offl ine模式下,后来获取并处理信号。伪在线模式处理收集的数据,就像实时接收一样。主要的区分是OfflINE模式经常分析整个数据,而在线和伪在线模式仅在短时间窗口中分析数据。offlINE分析通常是使用异步BCI进行的,该分析将分析限制为预先确定的时间窗口。异步BCI与在线和伪在线模式相吻合,允许灵活的心理活动持续时间。offlINE处理往往更准确,而在线分析对治疗应用更好。伪在线实现近似于在线处理而无需实时限制。与现实生活相比,许多BCI研究都引入了偏见,从而影响了分类算法的性能。方法:因此,本研究论文的目的是扩展以O fflINE模式运行的当前MOABB框架,以便允许在伪内部设置中使用不同的算法与基于重叠滑动窗口的技术的使用进行比较。这样做将需要在数据集中引入空闲状态事件,该事件考虑了所有不是任务思维的不同可能性。为了验证算法的性能,我们将使用归一化的Matthews相关系数(NMCC)和信息传输率(ITR)。主要结果:我们分析了过去15年的最新算法,该算法是由几个受试者组成的几个运动图像(MI)数据集,显示了从统计学的角度来看两种方法之间的差异。引人注目的能力:分析在OfflINE和伪在线模式中不同算法的性能的能力将使BCI社区获得有关分类算法性能的更准确和全面的报告。
最近的研究表明,能够记录患有半晶状体切除术的脑外伤(TBI)患者的脑电图(EEG)中高γ信号(80-160 Hz)。然而,由于与面部和头部运动相关的表面肌电图(EMG)伪影的混淆带宽重叠,因此提取与运动相关的高γ仍然具有挑战性。在我们以前的工作中,我们描述了一种增强的独立组件分析(ICA)方法,用于从EEG中删除EMG伪像,并通过添加EMG来源(ERASE)称为EMG降低。在这里,我们对六名Hemicraniectomies患者记录的EEG测试了该算法,同时他们执行了拇指流失任务。删除的平均值为52±12%(平均±S.E.M)(最大73%)EMG伪影。相比之下,常规ICA从EEG中删除了EMG伪像的平均值为27±19%(平均值±S.E.M)。尤其是,在擦除擦除后,在半晶切除术中的对侧手运动皮层区域中,高γ同步显着改善。更复杂的高γ复杂性是分形维度(FD)。在这里,我们在每个通道上计算了EEG高γ的FD。高γ的相对FD定义为移动状态下的FD在空闲状态下减去FD。我们发现,施加擦除后,高γ的相对FD与半骨切除术相对于半晶状分裂术,与纤维流量的振幅密切相关。的结果表明,与拇指流量相关的电极上的显着相关系数平均为〜0.76,而非流行性辐射切除术区域的同源电极的系数接近0。在常规ICA之后,在两个半开裂区域(最高0.86)和非流行颅切除术区域(最高0.81)中,高γ和力之间的相对FD之间的相关性均保持较高。在所有受试者中,使用擦除后,平均83%的电极与力显着相关。常规ICA后,只有19%的具有显着相关性的电极位于半晶切除术中。
在过去,将图像栩栩如生被认为是魔术。在传统的中国故事“魔术刷妈的玛利安”中,作者想象着一支魔术笔可以直接绘制活着的照片。巧合的是,哈利·波特(Harry Potter)的故事创造了一个死去的祖先生活在墙壁绘画中的世界。除了小说之外,实现这一目标的探索从未停止。1878年,穆布里奇(Muybridge)提出了一个名为“马运动的马”的著名实验,该实验连续显示了一系列连续的跑步马的图片,可以被视为视频。随着数字设备的开发,当前方法试图使用计算机视觉算法[8,13,16,17,21,21,24,24,27,32,32,32,34,36,40,50]。但是,它面临着几个限制。一方面,这些方法通常集中在有限类别的动画对象上,例如流体[16、24、25],人毛[37]和人体/脸部[6,8,9,13,13,17,27,27,32,34,36,36,50]。由于每种特定类型的领域知识,这些方法通常具有完全可控制的场景能力。,例如,sadtalker [50]可以通过音频和给定的脸产生准确的人脸动画。text2cinemagraph [25]使用文本描述来阐明水的自然动画。对于控制能力,这些方法通常遵循通过自我监督分解学习视频,然后通过新驾驶信号进行动画的规则。但是,由于先验自然动画的限制,由于一般域知识的多样性,这些方法在一般图像空间中失败。与以前的内域图像动画不同,基于当前扩散的图像 - to-video(i2v)方法学会以最终的方式从图像中生成视频。多亏了文本对图像模型的大规模生成之前,即稳定扩散[29],这些方法[1,2,7,11,39]已证明了开放域图像动画的可能性。但是,它们生成的内容可能与给定的图像[1,2,11,39]不同,并且通常通过文本说明[1,2,39]或仅简单的空闲动画[7]产生简单的动作。这些缺点限制了其用于现实世界图像动画任务的应用程序,在该任务中,用户通常需要像以前的内构象中图像动画算法一样创建更可控制的视频。利用域中图像动画和图像到视频的几代,我们很好奇:是否有一个通用的图像动画框架
□ 登录您的“我的门户”帐户。 □ 单击屏幕顶部的“学生”选项卡。 □ 向下滚动并转到“学位作品”(屏幕左侧)。 □ “学位作品”在审计屏幕中打开。审计反映您选择的 De Anza 目标。 □ 单击“计划”选项卡以创建教育计划。 □ 单击“新计划”(屏幕右上方),然后选择“空白计划”,将打开“编辑”屏幕。 □ 为您的计划提供描述,例如:简略教育计划 - 历史(专业)。 □ 选中“活动”框。 □ 单击右上角的 (+) 符号以添加新学期。 □ 从屏幕右侧的“仍需”部分,您可以将课程直接拖放到教育计划中。例如,单击“通识教育要求”下拉列表,然后将课程拖放到学期标题栏上,它就会出现在计划中。 □ 可以在课程搜索功能下找到不适用于学位的课程,例如 MATH 212、ESL 263 等。单击位于所选季度下方的 (+) 符号,然后选择课程。 □ 单击搜索图标(放大镜)并输入您想要放入计划的“科目”:EWRT、MATH、HIST、ESL 等;然后从此滚动列表中选择您想要的特定课程。 德安扎学院教授的所有课程都以 5 个字符的格式显示在此列表中。示例:EWRT 1A 显示为 (D001A),MATH 114 显示为 MATH (D114)。Foothill 课程以字母 F 开头。 □ 如果需要,您可以向本学期添加更多课程,或选择一个新学期。 □ 完成 1-2 个季度计划后,请务必单击保存(右下角)。 *请定期点击保存按钮,因为如果您空闲,系统会超时。 □ 如果您收到错误消息,则很可能是学期或课程字段留空。单击空白字段,直到它变成深蓝色,然后单击 (-) 符号删除空白字段。□ 注意:要成为全日制学生,您必须至少注册 12 个单元。□ 注意:如果您选择“未决定”作为专业,您将无法创建教育计划。您可以在学期开始时在门户中选择专业。□ 成功!您现在可以注销 *** 保存 Ed 计划后,您将完成优先注册的最后一步。您的 Ed 计划是您为下一学期选择课程的指南。您仍然需要在指定的注册日期和时间当天或之后在门户中注册课程。
简介:脑机接口 (BCI) 尚未被主流采用作为控制范例,因为大多数 BCI 系统都很笨重、难以设置,并且在移动环境中通常表现不够好,无法取代现有的输入模式。然而,BCI 可能有望成为多模式系统的一部分,当用户的手不空闲和/或无法发出语音命令时,该系统可以增强交互,这通常是高度移动应用领域的要求。随着电极功能的最新进展以及移动设备和头戴式显示器处理能力的提高,现在可以在移动设备上实时获取、发送和处理 EEG 信号。这些改进使得构建可穿戴移动 BCI 成为可能,它可以为主流用户和残疾人提供替代的交互方法。本摘要描述了我们正在进行的设计和评估可穿戴移动 BCI 组件的工作中的两项试点研究。材料、方法和结果:在我们的第一项研究中,我们的目标是设计一个 BCI 来检测所有可穿戴组件的 SSVEP。谷歌眼镜 [2] 用于同时向参与者呈现两个闪烁的视觉刺激,频率为 13 Hz 和 17 Hz。我们的 EEG 放大器是一块 OpenBCI 板,我们使用定制的 3D 打印夹子将其夹在参与者的腰带上。我们使用三个电极:枕骨(Oz)作为信号、乳突作为接地、耳垂作为参考,来检测 SSVEP 信号。我们记录了 EEG 数据以供离线分析。在 10 个疗程中,使用图 1 所示的装置,我们可以检测到参与者正在关注两个刺激中的哪一个,对于 13 Hz 的准确率为 76%-84%,对于 17 Hz 的准确率为 67%-72%,对于 1 秒长滑动窗口 SSVEP 的 PSD 振幅谱作为特征,使用对每个刺激单独训练的 10 倍交叉验证 RF 分类器。我们将实验扩展到步行-秒表刺激场景,发现单个刺激 1 秒长滑动窗口 SSVEP 的准确率为 93%。我们第二项研究的目的是确定是否可以用易于制作的定制入耳电极替换头皮电极,该电极改编自 Looney [1] 讨论的耳电极设计。我们使用 eFit s 扫描仪创建了参与者左耳的模型。然后,我们 3D 打印了一个耳机,并放置了 3 个预凝胶的 Ag/AgCl 接地板电极,并用银箔覆盖,使它们接触外耳的耳道壁。将用于比较的入耳电极和 Oz 连接到可穿戴 OpenBCI 系统和距离用户 6 厘米的闪烁的 13Hz LED。如图 2 所示,枕骨区域的峰值 SSVEP 幅度高于耳道,但 SNR 也增加了,因此使用可穿戴 BCI 从耳朵和头皮的检测准确率可达到 80-90%。
什么是采摘篮?采摘篮是物流中使用的存储容器。什么是愿景?愿景是您希望电子商务业务如何发展的清晰图片。什么是库存?库存天数用于衡量公司持有的库存时间。仓库中的垃圾箱是什么?垃圾箱是仓库中使用的较小容器,以使它们保持井井有条。电子商务中有什么堆叠?有几种在电子商务中存储材料和产品的方法。评估制造业中的真实成本需要将内部问题分解为美元值,例如废料率或手动处理错误,以准确地了解总体费用。利用“单位总成本”(UTC)之类的方法可以更清楚地了解供应商的成本,并帮助利益相关者了解其组织支出的完整情况。下一步涉及绘制制造流程,确定潜在问题并量化相关成本 - 将其分为硬成本,这些成本涉及直接现金支出和软性成本,尽管没有立即现金影响,否则衡量了生产力。企业努力创建最佳的供应链,但通常缺乏所有成本的可见性,而是专注于供应商和运输成本等明显的费用。要做出明智的购买决策,制造商需要一种方法来识别和量化内部成本,以大大增加供应成本。库存成本不一定意味着完全消除库存。2。3。了解其供应链中各个过程之间的相互关系对于制造商有效地导航复杂的IoT供应链至关重要。影响供应链成本的主要驱动因素包括全球贸易政策的变化,消费者行为的转变以及技术进步。投资决策在创建长期创新策略(例如投资新设施或资源)方面起着至关重要的作用,有效地管理投资成本对成功至关重要。制造商管理投资成本的清单包括对整个供应链网络的整体视野,制定智能市场战略以及保持对市场的实时见解。驱动数据驱动的运输决策优化供应链计划运输成本可以通过做出明智的供应链决策大大降低。相反,专注于减少多余的库存并维护正确数量的正确产品。在制造业中,高质量的商品不能用低质量的组件成本效率地生产;质量必须是整个价值链中的一致方面,尤其是对于无法负担质量失败的库存水平低的及时制造。要管理质量成本,制造商应采用质量作为主要的竞争策略,并制定合理的质量计划,以减少返工,废料,重复检查并改善准时交付。这将带来卓越的质量,可观的节省和更少的时间表差异。在供应链优化中,吞吐量会影响运营改进和成本节省三个级别:1。执行级别:确定在何处重点对业务健康产生全面影响的决策,例如确定和优先提高改进措施以最大程度地提高收入。战术水平:制定行动计划以影响必要的变化,例如确定缓冲库存水平,平衡需求和供应可变性或理想的库存水平以实现有效需求。洞察力驱动的水平:获得有关移动,加速或减少/删除以简化材料流量,产生额外销售,增强产品组合和解决浪费的洞察力。这三种洞察力将指导高管实现切实的成本节省。降低供应链成本是获得可持续市场优势的关键。通过优化生产,产品组合,材料运动,库存管理和资产利用,企业可以削减其网络成本。目的是通过确定和控制供应链成本驱动因素来降低企业成本,从而随着时间的推移提高利润率。但是,这些驱动因素在公司和模型之间有所不同,这就是为什么吞吐量的需求驱动的方法为短期和长期的快速,持续成本降低提供了结构性策略。使用净利润影响摘要图表(例如吞吐量)可以: *快速比较每个功能区域如何促进净利润,考虑到所有相互依存关系。*总结所有业务领域的最小和最大影响范围。*预测公司范围内或业务部门层面的总体预期净利润影响。但是,这也带来了独特的节省成本的机会!凭借这种供应链资金的可见性,管理人员可以确定特定的改进领域,以提高收入和盈利能力。例如,分析产品组合有效性可以帮助仅优先考虑具有正现金流量潜力的产品。提高需求预测的准确性减少了浪费,并消除了财务状况不足的效率低下。吞吐量的需求感应能力迅速消除了运营效率低下,优化了容量并解锁了额外的销售。企业还可以根据不断变化的市场动态和建议的行动来确定吞吐量改进的潜力,从而最大程度地提高资源并加速收入。过多的库存将营运资金联系起来,而存货却损失了销售机会 - 既有害了盈利能力。随着吞吐量,企业可以: *维持支持操作,营运资金支出需求和销售工作的最佳库存水平。*确定营运资金节省,并通过比较当前的库存水平与历史水平进行比较,从而最大程度地减少了由于库存而丢失的销售机会。即使在今天,由于混乱的需求模式,准确估算未来的销售和整体利润率仍然是一个挑战。吞吐量可帮助企业识别出最大收入和最高价值产品最高价值的产品。这使公司能够专注于生产更多的高收入产品,而利润率较低的产品则更少,从而增强其投资组合。为了最大程度地提高投资回报率,企业可以考虑诸如优化现有能力,最小化废物和最大化资源等策略。实现运营里程碑和长期业务目标对于控制成本至关重要,而吞吐量的AI驱动平台通过将控制塔功能与跨各种流程的持续计划相结合,有助于实现这一目标。该平台使企业能够通过基于方案的建模来识别流程瓶颈,优化生产KPI并增强操作敏捷性。吞吐量的工具分析了历史数据和市场趋势,以准确预测需求,有助于确定当前功能是否可以达到需求水平并确定额外投资的领域。通过优先考虑表现最好的产品和主要客户,企业可以提高生产率,最大化盈利能力并最大程度地减少空闲能力。该平台还可以专注于准确的流程,这对于确定支持战略规划和运营的系统至关重要(S&OP)。有效的S&OP有助于共享跨职能部门的信息,并将人们团结在结构化计划中。企业必须根据业务目标而不是策略优先考虑其策略。这涉及制定供应链策略,该策略推动整体业务或客户服务目标,同时了解客户需求。需求驱动的供应链,由准确的预测启用,允许敏捷能力利用和主动风险管理。通过简化补货流程,企业可以提高运营效率并最大程度地减少停机时间。要验证供应链策略,请考虑以下内容:已被充分记录吗?它包括所有业务运营还是仅限于特定部门?将供应链操作与实时需求模式保持一致,可以减少提前时间,定价策略调整,保证金扩展,新产品线介绍以及有限的供应方案的有效管理。是否与其他业务或孤岛进行协调管理项目?全面的可见性增强了库存运动,降低了供应链成本。吞吐量的预测分析优化了库存水平和库存管理,以确保保持正确的库存水平。其新的功能有助于营运资本优化,具有成本效益的全渠道订单履行,及时补充和动态安全库存管理。它还可以主动对项目支出进行积极分析,以确定未对准的支出并改善财务管理。定义明确的运输策略揭示了供应链物流中隐藏的节省成本的机会。吞吐量的AI驱动物流计划提高了运营效率,优化运输并支持可持续性目标。吞吐量的预测分析和财务能力可帮助企业优化供应链运营,减轻风险并利用创建有利可图的生态系统的机会。通过获得相互联系的供应链活动的全面知名度,企业可以降低成本,提高盈利能力并实现更健康的底线。随着吞吐量,CFO可以在动荡的市场中做出更明智的决策,从而导致可预测的财务,运营和可持续成果。供应链成本是公司为执行供应链活动所产生的总成本的量度,该活动计算为收入的百分比。较低的百分比表示更好的性能,而较高的百分比表明支出增加以满足需求,从而降低了毛利率。吞吐量的软件可以帮助提高需求计划,库存管理,操作和物流的改进,并增加供应链可见性,弹性和可行性,从而降低供应链成本。通过预订演示并尝试今天尝试吞吐量,企业可以开始在其供应链中节省大量成本。企业管理物流运营的总费用,包括计划资源分配客户需求处理收益的执行。
