目的:BCI(脑部计算机界面)技术以三种模式运行:在线,OfflINE和伪内线。在在线模式下,经常分析实时脑电图数据。在offl ine模式下,后来获取并处理信号。伪在线模式处理收集的数据,就像实时接收一样。主要的区分是OfflINE模式经常分析整个数据,而在线和伪在线模式仅在短时间窗口中分析数据。offlINE分析通常是使用异步BCI进行的,该分析将分析限制为预先确定的时间窗口。异步BCI与在线和伪在线模式相吻合,允许灵活的心理活动持续时间。offlINE处理往往更准确,而在线分析对治疗应用更好。伪在线实现近似于在线处理而无需实时限制。与现实生活相比,许多BCI研究都引入了偏见,从而影响了分类算法的性能。方法:因此,本研究论文的目的是扩展以O fflINE模式运行的当前MOABB框架,以便允许在伪内部设置中使用不同的算法与基于重叠滑动窗口的技术的使用进行比较。这样做将需要在数据集中引入空闲状态事件,该事件考虑了所有不是任务思维的不同可能性。为了验证算法的性能,我们将使用归一化的Matthews相关系数(NMCC)和信息传输率(ITR)。主要结果:我们分析了过去15年的最新算法,该算法是由几个受试者组成的几个运动图像(MI)数据集,显示了从统计学的角度来看两种方法之间的差异。引人注目的能力:分析在OfflINE和伪在线模式中不同算法的性能的能力将使BCI社区获得有关分类算法性能的更准确和全面的报告。
主要关键词