在开采和运输煤炭的过程中,操作员在矿井狭窄的空间内可能会被移动机械撞击或抓住。解决此问题的方法是使用运输设备上的导航系统,以便它跟随开采煤炭的机器。这本质上涉及基于传感器的机器对接。能够在恶劣的矿井环境中生存的传感器起着关键作用,这些环境包括灰尘、甲烷气体和水。对采矿机的运动和经验机器特性进行计算机分析,以确定操作要求和空间限制,确保将煤炭正确装载到运输设备中。这些数据用于选择传感系统。扫描激光系统和超声波传感器等各种技术经常用于其他应用,但被发现不可接受。但是,采用主动目标的近红外 (IR) 传感器满足要求。该传感器具有标称 75 EE 锥形视场,范围为 0.1 至 18.0 m。 对于单目标模式,在距离 3.56 m 时,标称范围精度为 4.3%。 生成校正算法将误差降低至 0.6%。空气中的灰尘测试表明,在超过联邦法律允许的浓度(7.5 倍)的水平下,准确度(最坏情况)下降不到 0.8%。该传感器可以跟踪多个主动目标,提供五个自由度 (DOF) 测量。使用四个目标,标称范围精度为 0.4%,无需校正算法。III 的制导系统。当前操作场景 跟随采矿机器的运输系统在商业上不存在。这样的系统可以减少当前运输采矿设备造成的死亡和伤害,并且是当前运输控制的可行替代方案。
摘要 虚拟现实 (VR) 为研究认知过程提供了一种强大的工具,因为它允许研究人员在复杂但高度受控的场景中衡量行为和心理状态。将 VR 头戴式显示器与 EEG 等生理测量相结合使用带来了新的挑战,并提出了一个问题:既定的发现是否也适用于 VR 设置。在这里,我们使用 VR 耳机来评估视觉短期记忆的两个公认的 EEG 相关因素的空间限制:对侧延迟活动 (CDA) 的幅度和记忆保留期间诱导 alpha 功率的侧化。我们在变化检测任务中测试了观察者的视觉记忆,双侧刺激阵列有两个或四个项目,同时改变记忆阵列的水平偏心率(4、9 或 14 度视角)。在两个较小的偏心率下,高和低记忆负荷的 CDA 幅度不同,但在最大的偏心率下没有不同。记忆负荷和偏心率均不显著影响观察到的 alpha 侧化。我们进一步安装了时间分辨空间滤波器,以从事件相关电位及其时频分解中解码记忆负荷。两种方法在保留间隔内的分类性能均高于偶然水平,并且在不同偏心率之间没有显著差异。我们得出结论,商用 VR 硬件可用于研究 CDA 和侧化 alpha 功率,并且我们为未来在 VR 设置中针对这些视觉记忆的 EEG 标记的研究提供了注意事项。
摘要 多功能、可部署和可打包天线对于许多应用都非常重要,包括无人机、卫星通信(例如立方体卫星)和通用机载和星载通信系统。值得注意的是,这种天线为上述应用提供了新功能。在本文中,我们介绍了关于可折叠和物理可重构天线的新兴研究,这些天线可以改变其形状以适应和重新配置其电磁性能(例如工作频率、带宽、极化、波束宽度等)。 1. 简介 可重构、可调、多功能、可部署的天线系统已广泛用于支持无线通信系统的多种服务。电气和机械重构方法已经得到开发并应用于机载和星载系统的各种应用,例如通信、侦察、传感和能量收集 [1],[2]。最近推出的一类新的物理可重构天线是折纸天线 [3]。与传统天线相比,折纸天线具有独特的优势,例如性能可重构、可调性和高效存放。它们固有的电磁和机械多功能行为使它们适合便携式军事和太空应用,这些应用对空间要求严格(例如,小型卫星平台的空间限制)。此外,折纸天线变形的能力使得开发具有前所未有和变革性能力的新型电磁 (EM) 系统成为可能,例如:(a) 天线可以改变其几何形状,以根据时间调整其性能并实现多功能性,(b) 2-D 和 3-D 天线阵列可以改变其覆盖面积、形状和/或元件分离,以实现最佳波束成形、波束控制和扫描范围,以及 (c) 可重构频率选择表面可以改变其性能以支持可调和多功能天线和阵列的操作(见图 1)。[4] 中可以找到有关折纸天线和可展开电磁结构的最新评论。
在开采和运输煤炭的过程中,操作员在狭窄的矿井内可能会被移动机械撞击或抓到。解决此问题的方法是使用运输设备上的导航系统,使其跟随开采煤炭的机器。这实际上涉及基于传感器的机器对接。能够承受恶劣的矿井环境(包括灰尘、甲烷气体和水)的传感器起着关键作用。对采矿机的运动和经验机器特性进行计算机分析,以确定操作要求和空间限制,以确保将煤炭正确装入运输设备。这些数据用于选择传感系统。扫描激光系统和超声波传感器等各种技术经常用于其他应用,但被发现不可接受。然而,采用主动目标的近红外 (IR) 传感器满足要求。该传感器具有标称 75 EE 锥形视场和 0.1 至 18.0 m 的范围。对于单目标模式,在 3.56 米的距离处,标称范围精度为 4.3%。生成了校正算法,将误差降低至 0.6%。空气中的灰尘测试表明,在超过联邦法律允许的浓度(7.5 倍)的水平下,精度(最坏情况)下降不到 0.8%。该传感器可以跟踪多个活动目标,提供五个自由度 (DOF) 测量。使用四个目标,标称范围精度为 0.4%,无需校正算法。III. 当前操作场景 拖运系统跟随采矿机的制导系统在商业上不存在。这样的系统可以减少当前拖运采矿设备造成的死亡和伤害,并且是当前拖运控制的可行替代方案。
在开采和运输煤炭的过程中,操作员在狭窄的矿井内可能会被移动机械撞击或抓到。解决此问题的方法是使用运输设备上的导航系统,使其跟随开采煤炭的机器。这实际上涉及基于传感器的机器对接。能够承受恶劣的矿井环境(包括灰尘、甲烷气体和水)的传感器起着关键作用。对采矿机的运动和经验机器特性进行计算机分析,以确定操作要求和空间限制,以确保将煤炭正确装入运输设备。这些数据用于选择传感系统。扫描激光系统和超声波传感器等各种技术经常用于其他应用,但被发现不可接受。然而,采用主动目标的近红外 (IR) 传感器满足要求。该传感器具有标称 75 EE 锥形视场和 0.1 至 18.0 m 的范围。对于单目标模式,在 3.56 米的距离处,标称范围精度为 4.3%。生成了校正算法,将误差降低至 0.6%。空气中的灰尘测试表明,在超过联邦法律允许的浓度(7.5 倍)的水平下,精度(最坏情况)下降不到 0.8%。该传感器可以跟踪多个活动目标,提供五个自由度 (DOF) 测量。使用四个目标,标称范围精度为 0.4%,无需校正算法。III. 当前操作场景 拖运系统跟随采矿机的制导系统在商业上不存在。这样的系统可以减少当前拖运采矿设备造成的死亡和伤害,并且是当前拖运控制的可行替代方案。
在开采和运输煤炭的过程中,操作员在狭窄的矿井内可能会被移动机械撞击或抓到。解决此问题的方法是使用运输设备上的导航系统,使其跟随开采煤炭的机器。这实际上涉及基于传感器的机器对接。能够承受恶劣的矿井环境(包括灰尘、甲烷气体和水)的传感器起着关键作用。对采矿机的运动和经验机器特性进行计算机分析,以确定操作要求和空间限制,以确保将煤炭正确装入运输设备。这些数据用于选择传感系统。扫描激光系统和超声波传感器等各种技术经常用于其他应用,但被发现不可接受。然而,采用主动目标的近红外 (IR) 传感器满足要求。该传感器具有标称 75 EE 锥形视场和 0.1 至 18.0 m 的范围。对于单目标模式,在 3.56 米的距离处,标称范围精度为 4.3%。生成了校正算法,将误差降低至 0.6%。空气中的灰尘测试表明,在超过联邦法律允许的浓度(7.5 倍)的水平下,精度(最坏情况)下降不到 0.8%。该传感器可以跟踪多个活动目标,提供五个自由度 (DOF) 测量。使用四个目标,标称范围精度为 0.4%,无需校正算法。III. 当前操作场景 拖运系统跟随采矿机的制导系统在商业上不存在。这样的系统可以减少当前拖运采矿设备造成的死亡和伤害,并且是当前拖运控制的可行替代方案。
目的:ALSA 中心每年出版三次《ALSB》。ALSA 是一个多军种国防部外勤机构,由美国陆军训练与条令司令部 (TRADOC)、海军陆战队作战发展司令部 (MCCDC)、海军作战发展司令部 (NWDC) 和总部空军条令中心 (AFDC) 赞助。本期刊受陆军条例 25-30 第 10 章管辖。ALSB 是“传播”作战概念、问题和服务互操作性最新发展的一种媒介。其目的是为全球读者提供跨军种的信息流。免责声明:由于 ALSB 是一个开放论坛,因此此处表达或暗示的文章、信函和意见不应被视为 TRADOC、MCCDC、NWDC、AFDC 或 ALSA 中心的官方立场。投稿:我们征集文章和读者评论。投稿字数最好不超过 1,500 字。提交稿件,使用 MS Word 双倍行距。包括姓名、职称、完整的单位地址、电话号码和电子邮件地址。图形可以出现在文章中,但是您还必须为每个图形提供单独的计算机文件。将电子邮件投稿发送至 alsaeditor@langley.af.mil。ALSA 中心保留编辑内容以满足空间限制并符合 ALSB 的风格和格式的权利。下一期:2006 年 9 月。提交截止日期:COB 2006 年 7 月 15 日。邮寄/分发:本出版物由位于弗吉尼亚州兰利空军基地的 ALSA 中心包装邮寄和分发。重印:ALSA 中心允许重印文章。请注明作者和 ALSB。允许并鼓励本地复制 ALSB。订阅:我们会继续验证订阅者的信息和要求。如果您希望停止订阅 ALSB,请通过电话或电子邮件联系编辑。
Poseidon Resources (Channelside) LP 已与 Miller Marine Science & Consulting, Inc. 签订合同,根据命令号 R9-2019-0003(经命令号 R9-2020-0004 和命令号 R9-2023-0137 修订)(统称“命令”)进行受纳水监测。该命令于 2019 年 5 月 8 日通过,并于 2019 年 7 月 1 日生效。该命令的第一修正案于 2020 年 2 月 12 日通过并生效,该命令的第二修正案于 2023 年 9 月 14 日通过并生效。受纳水监测于 2019 年 7 月开始,在命令中规定的除一个季度外的每年四个季度进行。2020 年春季海上监测因 COVID-19 疫情和船上空间限制而暂停,无法在实践中有效遵守建议的社交距离。 2020 年春季仅对冲浪区站点进行了监测,因为这项工作可以在保持海滩社交距离的同时完成。2020 年夏季恢复了海上采样,因为医疗专业人员确定了除社交距离之外的可用策略来最大程度地降低暴露风险。沉积物采样每年按照命令中规定的轮换模式进行。每年在六个站点中的每一个站点完成沉积物特性和沉积物化学分析。2021 年,沉积物毒性分析和底栖动物分析也已完成,数据可纳入本报告。沉积物毒性和底栖动物现场采样于 2023 年完成,分析正在进行中,结果将纳入 2023 年监测年度受纳水监测报告中,该报告将于 2024 年 7 月 1 日或之前按照命令的时间表提交给圣地亚哥区域水质控制委员会。
目的:ALSA 中心每年出版三次 ALSB。ALSA 是一个多军种国防部外勤机构,由美国陆军训练与条令司令部 (TRADOC)、海军陆战队作战发展司令部 (MCCDC)、海军作战发展司令部 (NWDC) 和总部空军条令中心 (AFDC) 赞助。本期刊受陆军条例 25-30 第 10 章管辖。ALSB 是一种“传播”作战概念、问题和服务互操作性最新发展的工具。其目的是为全球读者提供跨军种的信息流。免责声明:由于 ALSB 是一个开放论坛,因此本文表达或暗示的文章、信件和意见不应被视为 TRADOC、MCCDC、NWDC、AFDC 或 ALSA 中心的官方立场。投稿:我们征集文章和读者评论。投稿字数最好不超过 1,500 字。提交投稿,使用 MS Word 双倍行距。包括姓名、职称、完整单位地址、电话号码和电子邮件地址。图形可以出现在文章中,但您还必须为每个图形提供单独的计算机文件。将电子邮件投稿发送至 alsaeditor@langley.af.mil。ALSA 中心保留编辑内容以满足空间限制并符合 ALSB 的风格和格式的权利。下一期:2006 年 9 月。提交截止日期:COB 2006 年 7 月 15 日。邮寄/分发:本出版物由弗吉尼亚州兰利空军基地的 ALSA 中心包装邮寄和分发。重印:ALSA 中心授权重印文章。请注明作者和 ALSB 。允许并鼓励本地复制 ALSB。订阅:我们继续验证订阅者的信息和要求。如果您希望停止订阅 ALSB ,请通过电话或电子邮件联系编辑。
摘要 金属卤化物钙钛矿基纳米结构、纳米片和纳米颗粒处于最前沿,具有吸引人的光电特性,适用于光伏和发光应用。因此,全面了解这些基本的电子和光学特性是充分利用此类半导体技术的关键一步。迅速发展的化学工程及其不同寻常的结构多样性令人着迷,但对于与传统半导体相媲美的合理描述也具有挑战性。从这个意义上说,基于群论的对称性分析提供了一种通用而严格的方法来理解各种块体钙钛矿和钙钛矿基纳米结构的性质。在本文中,我们使用群论中的对称性分析回顾了金属卤化物钙钛矿半导体的电子和光学响应,回顾了 AMX 3 块体钙钛矿的典型立方 Pm-3m 晶格的主要结果(其中 A 为阳离子,M 为金属,X 为卤化物),然后将分析扩展到三种技术感兴趣的情况:AMX 3 纳米粒子、A 4 MX 6 孤立八面体、A 2 MX 4 层状系统和最近引入的缺陷卤化物钙钛矿 (d-HP)。基于对称性论证,我们将强调这些材料的电子和光学特性的相似性和差异性,这是由空间限制和维数引起的。同时,我们将利用这种分析来讨论文献中的最新结果和争论,如钙钛矿纳米粒子和纳米片的带边激子精细结构中暗/亮态的能量学。从目前的工作中,我们还预测 d-HP 的带边激子精细结构不会呈现光学暗状态,与 AMX 3 纳米粒子和层状钙钛矿形成鲜明对比,这一事实可能对这些新型钙钛矿的光物理产生重要影响。