摘要整合素介导的细胞附着迅速诱导酪氨酸激酶信号传导。尽管经过多年的研究,这种信号在整合素激活和粘着斑组装中的作用仍不清楚。我们提供的证据表明,Src 家族激酶 (SFK) 底物 Cas(Crk 相关底物、p130Cas、BCAR1)被磷酸化并与其 Crk/CrkL 效应物结合,这些效应物是粘着斑的前体。初始磷酸化 Cas 簇包含处于非活性弯曲闭合构象的整合素 β 1。后来,随着整合素 β 1 被激活,并募集核心粘着斑蛋白(包括黏着斑蛋白、踝蛋白、kindlin 和 paxillin),磷酸化 Cas 和总 Cas 水平降低。Cas 是上皮细胞和成纤维细胞在胶原蛋白和纤连蛋白上的细胞扩散和粘着斑组装所必需的。 Cas 簇的形成需要 Cas、Crk/CrkL、SFK 和 Rac1,但不需要黏着斑蛋白。Rac1 通过活性氧向 Cas 提供正反馈,而泛素蛋白酶体系统则提供负反馈。结果提示,粘着斑组装存在两步模型,其中磷酸化 Cas、效应子和失活整合素 β 1 簇通过正反馈生长,然后是整合素激活和核心粘着斑蛋白募集。
,6$䄢⪌ 运畴 ⼽ ِٚؠׂٜTPVKJLLPմ٭ًشع榫䍚睳浓تةմ⼽
DNA双链断裂(DSB),以确保基因组稳定性。至关重要的是,必须将DSB末端保持在一起才能及时修复。在酿酒酵母中,两种知之甚少的途径介导了DSB的终端。使用MRE11-RAD50-XRS2(MRX)复合物在物理上桥接DSB末端。另一个要求DSB通过EXO1转换为单链DNA(ssDNA),但桥接蛋白是未知的。我们发现该粘着蛋白,其加载器和SMC5/6用EXO1作用于Tether DSB末端。非常明显的是,寡聚中特异性受损的粘着蛋白未能束缚DSB,从而揭示了粘着蛋白寡聚的新功能。除了姐妹染色单体内聚力的已知重要性外,基于显微镜的微流体实验通过确保DSB终端连接来揭示凝聚蛋白在修复中的新作用。总的来说,我们的发现表明,粘着蛋白的低聚可防止DSB的末端分离并促进DSB修复,从而揭示了粘连在保护基因组完整性中的新型作用和作用。
抽象的粘着蛋白将基因组DNA挤压成促进染色质组装,基因调节和重组的环。在这里,我们表明粘着蛋白将负超胶引入挤出的DNA中。超螺旋需要粘蛋白的ATPase头,这些头部夹紧DNA以及在粘蛋白的铰链上的DNA结合位点,表明在铰链和夹具之间约束粘蛋白超侧Coil DNA。我们的结果表明,一旦粘蛋白在超涂层期间达到其失速扭矩,DNA挤出会停止,而粘蛋白突变体预测会停滞在较低的扭矩形成细胞中的较短环。这些结果表明,超涂层是环挤出机制的组成部分,并且粘着蛋白不仅通过循环DNA,而且通过将其超级旋转来控制基因组结构。真核间相细胞中的主要文本,SMC(“染色体的结构维持”)复合粘着蛋白将基因组DNA折叠成环和拓扑结构域(TADS;参考(1-4)),可以调节转录(5),重组(6,7),姐妹染色单体分离(8)和复制(9)。粘着蛋白通过由ATP结合 - 水溶液周期控制的构象变化(12)(在(13)中进行了综述),将DNA挤压为环(10,11)。这些是由粘蛋白的SMC1和SMC3亚基催化的,其中包含50 nm长的盘绕螺旋,二聚体“铰链”结构域和球形ATPase'heads'(图s1a),与ABC转运蛋白相关(14)。在ATP结合后,粘蛋白的头部接合和一个称为NIPBL“夹具” DNA的亚基在接合的ATPase头顶上(参考(12,15-17);如图。s1b)。这些动作产生〜15 pn力(18)和循环挤出步骤〜40 nm(100-200 bp;ref。(19)),表明在头部互动过程中将DNA卷入形成循环中。相比之下,在环挤出过程中DNA的构象变化知之甚少。拓扑异构酶II在粘着蛋白环的底部结合并切割DNA(20-23),这表明DNA在这些位点上是超螺旋的。有丝分裂SMC复合物冷凝蛋白还与拓扑异构酶(24-30)共定位并相互作用,并且可以在体外超涂DNA(31-33)。已经提出了此过程发生在循环挤出过程中(31,33),但发现粘着蛋白不适合
新复制的姐妹染色单体由粘蛋白复合物束缚在一起,但是姐妹染色单体内聚力如何与DNA复制协调不足。流行模型表明在复制之前与DNA结合的粘着蛋白通过复制通过粘着蛋白环的复制或通过重现叉子在复制叉后通过重壳组件的转移来确定凝聚力。通过可视化与预加载的粘蛋白复合物碰撞的单个复制叉,我们发现重质体将粘蛋白推向满足收敛的重新分散体的位置。虽然在DNA复制终止期间去除收敛的重新分裂,但粘蛋白仍保持在新生的DNA上。我们证明了这些粘着蛋白分子将新复制的姐妹DNA系在一起。我们的结果支持了一个新模型,其中在DNA复制终止期间建立了姐妹染色单体内聚。
相关蛋白,以及其他细胞骨架相关蛋白(如中间丝、微管甚至信号蛋白)是否也参与二硫键诱导。目前尚不清楚内质网中的蛋白质为何对应激相关的二硫键不敏感,而内质网中由于氧化环境而形成大量二硫键 [3]。可能,由于还原环境,肌动蛋白细胞骨架等细胞质蛋白通常不会形成广泛的二硫键,因此在应激条件下,它们可能比细胞中其他位置的蛋白质对氧化还原更敏感 [4]。事实上,在葡萄糖饥饿的 SLC7A11 高细胞的粘着斑相关酪氨酸激酶中也发现了二硫键 [2]。酪氨酸激酶信号如何导致二硫键应激将成为研究的热门话题。此外,粘着斑与癌细胞侵袭和转移有关 [5]。粘附-侵袭-转移序列在二硫键凋亡中的作用值得进一步研究,例如在高 SLC7A11 表达抑制转移的情况下 [6]。
准确修复DNA双链断裂(DSB)对于基因组稳定性至关重要,并且有缺陷的修复是癌症等疾病的基础。同源重组使用完整的同源序列来忠实地恢复受损受损的DNA,但是损坏的DNA终止如何在包含数十亿个非同源碱基的基因组中找到同源位点,尚不清楚。在这里,我们介绍了姐妹孔C,这是一种高分辨率方法,用于绘制复制染色体中的分子内和转运相互作用。我们通过募集两个功能上不同的粘蛋白池来证明DSBS重塑染色体体系结构。环形成粘着蛋白积聚在巨型尺度范围内,以控制围绕破裂位点的拓扑关联结构域(TAD)内的同源性采样,而粘性粘着蛋白将浓缩的位点浓缩到蛋白质染色剂的链球末端。这种双重机制限制了同源性搜索空间,突出了染色体构象如何有助于保持基因组完整性。
1. 我们为儿童、年轻人和家庭付出更多努力 2. 年轻人讲述自己的故事 3. 我们像对待自己孩子一样对待年轻人 4. 我们把年轻人放在我们所做的一切的中心,真正的合作制作 5. 我们从优势和主张开始,包括家庭和社区 6. 我们建立基于关系的实践、服务和文化——积极和信任 7. 我们与专业人士合作 8. 我们开发和评估实践,始终以解决方案为中心 9. 我们投资并相信员工和护理人员,允许他们运用自己的判断力,给他们时间和空间来做决定 10. 我们像胶水一样粘着年轻人,永不放弃他们
具有量身定制的物理化学和生物学特征的组织工程支架的制造是生物医学工程中的一项相关任务。The present work was focused at the evaluation of the effect of fabrication approach (single-channel or multi-channel electrospinning) on the properties of the fabricated poly (lactic acid) (PLA)/poly (ε-caprolactone) (PCL) scaffolds with various polymer mass ratios (1/0, 2/1, 1/1, 1/2, and 0/1).使用扫描电子显微镜(SEM),水接触角度测量,傅立叶转换红外光谱(FTIR),X射线衍射(XRD),张力测试和内部繁殖型Mesememal Mesememal Mesememal septriment Mesement Angemement 使用扫描电子显微镜(SEM),水接触角度测量,水接触角度测量(FTIR)制造并进行了表征。 证明,多通道静电纺丝可以防止支架的聚合物组件之间的分子间相互作用,从而保留其晶体结构,这会影响支架的机械特征(尤其是导致伸长率差异2倍)。 证明了使用多通道静电纺丝制造的脚手架表面更好地粘着多能性间充质干细胞。使用扫描电子显微镜(SEM),水接触角度测量,水接触角度测量(FTIR)制造并进行了表征。证明,多通道静电纺丝可以防止支架的聚合物组件之间的分子间相互作用,从而保留其晶体结构,这会影响支架的机械特征(尤其是导致伸长率差异2倍)。证明了使用多通道静电纺丝制造的脚手架表面更好地粘着多能性间充质干细胞。