可持续发展目标 (SDG) 于 2015 年启动,其中三大目标是消除贫困、改善粮食安全和增进人类健康。所有 17 项可持续发展目标的目标实现日期均为 2030 年。这些目标雄心勃勃、鼓舞人心,需要大量创新和技术采用才能成功实现。自 20 世纪中叶以来,植物育种创新为改变粮食生产效率做出了巨大贡献,本世纪出现的创新显示出提高作物产量、粮食作物营养价值和环境影响的更大潜力。这些成果支撑了几个可持续发展目标,特别是前三个目标。随着气候变化预计将变得越来越多变,对农业的影响越来越大,确保增加粮食产量的能力将变得越来越重要,因为更高的产量直接有助于减少贫困。本文回顾了最近关于基因组编辑技术在提高产量、增强营养和提高可持续性方面可能做出贡献的报告,强调了它们对于实现前三个可持续发展目标的重要性。
摘要食品排毒中的抗氧化剂可以使细胞活性氧(ROS)和保护生物体。类黄酮是自然界重要的抗氧化剂起源之一,具有各种促进健康的功能,并且是模型和医疗植物中的热门研究主题。但是,主要粮食作物的小麦(Triticum Aestivum L.)的进展需要赶上。在这里,我们收集了200多个现代中国小麦品种,并分析了它们的类黄酮。一些小麦类黄酮在维生素C上显示出较高的ROS-氧化活性,但它们在谷物中的含量约为幼苗(小麦草)的1/20。小麦草的类黄酮提取物(很少)以剂量依赖性和性别特异性的方式成功拉长了模型动物的寿命(果蝇Melanogaster,W 118)。我们表征了主要的类黄酮和孤立的品种,积累了更多类黄酮。此外,茉莉酸(JA)处理诱导类黄酮生物合成,产生更多的类黄酮和较高的抗氧化电位。这项工作为有希望的小麦品种提供了信息,并采取了进一步的增强策略,以增强促进健康的潜力。
摘要中小微企业是国民经济扩张的重要驱动力之一,对 GDP 的贡献率为 60.5%。农业在国民经济中也发挥着重要作用,2022 年第三季度农业对 GDP 的贡献率为 12.91%。即便如此,农民的福利仍然相对较低。提高生产力和竞争力可以改善农民的福利。因此,进行了这项研究,以确定内部和外部因素,以提高粮食作物子部门农业中小微企业的竞争力并制定技术采用战略。该研究采用文献研究和对相关专家的深入访谈,使用 IFE、EFE、IE、TOWS 和 AHP 矩阵进行处理。Gapoktan Pamijahan 的主要弱点是农民年龄较大,不再具有生产力,但其最大的优势是所有成员都接受第四区农业推广中心的直接指导和监督。影响主要前景的外部因素中,评级最高的是农业技术的发展,而 Gapoktan Pamijahan 的主要困难是该地区缺乏可靠的农业数字基础设施。优先战略是青年农业科技孵化器。
粮食作物是指为生产适合食用的食品成分而种植的植物(Aly & Basik,2023),而根据第 201 条法律, 2012 年第 18 号关于食品的法律规定,食品成分是指来自生物资源和水的任何东西,无论是作为食品还是饮料。食物的主要功能是满足人体的能量和营养需求,因此食物成为社会的基本需求。粮食需求将始终随着人口的增长而增加。以印度尼西亚为例,预计 2050 年人口将达到 3.28 亿,因此全国粮食需求量估计为 4820 万吨,比 2010 年增加 145%(Ritung,2010 年)。如果印度尼西亚想要实现粮食自给自足,那么必须通过集约化生产来满足国内粮食需求,提高收获指数和作物生产力(Borlaug & Dowswell (2003)),但增加国内粮食产量不能损害环境,这可以通过采用可持续集约农业方法(可持续集约农业)来实现(Beltran - Pena et al., 2020)。实施可持续集约农业概念成功的关键之一是利用植物育种活动中的优良品种(Pretty et al., 2018)
植物是世界各地食物,衣服和庇护所的主要来源。在气候变化和外部投入(例如水,肥料和耕地)下,喂养不断增长的世界人口是人类面临的最紧迫的挑战之一。小麦是一种主要的粮食作物,在人类饮食中提供超过20%的卡路里和蛋白质,以及维生素,饮食纤维和植物化学物质1。病原体和害虫每年导致面包小麦的全球产量损失20%。要实施有效的遗传和生物技术方法来减少由于疾病而导致的损失,科学家需要对植物限制病原体的基本理解。然而,由于它们的大且重复的富含基因组,植物部落triticeae(包括小麦,大麦和黑麦)中抗病基因(R-Genes)的克隆仍然具有挑战性。基于基因组学基因克隆方法的最新发展促进了在Triticeae 3中发现非规范R-Gene家族的发现。在本期《自然遗传学》中,Wang等人的论文。4和Yu等。5描述了两个小麦抗病基因的鉴定,这些基因具有源自小麦野生亲戚的新型结构,均包含激酶与其他结构域的融合,此处指定为激酶融合蛋白(KFPS)(图。1)。
摘要 芋头 ( Colocasiae esculenta ) 是撒哈拉以南非洲种植的第三大块根和块茎作物,仅次于木薯和山药,但其全球产量受到疾病——芋头叶枯病 (TLB) 的严重威胁。这种疾病与卵菌 P.colocasiae 有关,它会攻击植物的每个部分,尤其是当它是易感品种时。超过 80% 的芋头损失是由于 TLB 的影响,这也是许多种植者忽视这种作物的原因,导致受影响地区的饮食模式和种植系统发生重大变化。缺乏用于芋头研究的资金也是导致作物被忽视的一个主要因素。更好地了解受影响地区的 P.colocasiae 分离株,可以更好地指导疾病管理策略,这些策略多年来包括使用抗性品种、化学和生物控制以及栽培实践。从计算机数据库中检索了将 TLB 描述为对芋头生产的严重威胁的文献。本文概述了该病的起源、流行病学和对种植的影响,并强调了生物技术为减少这种被忽视的热带粮食作物的损失提供的新机会。对许多人来说,这种古老的作物具有文化意义,解决 TLB 祸害至关重要。
摘要:花青素是一大批水溶性类黄酮色素。这些专门的代谢产物在植物王国无处不在,不仅在植物的繁殖和分散中发挥了至关重要的作用,而且在对生物和非生物胁迫的反应中也起着至关重要的作用。花青素被认为是人类饮食中重要的健康促进和慢性病的成分。因此,对开发这些重要营养素水平和成分的粮食作物的兴趣正在增长。本综述着重于阐明花青素途径的遗传控制的工作,并调节茄子(Solanum Melongena L.)和番茄(Solanum lycopersicum L.)中的花青素含量,两种全球相关性的静电性水果蔬菜。虽然茄子果实中的花色蛋白水平一直是重要的品质特征,但基于花色素的紫色番茄品种目前是一种新颖性。在本综述中详细介绍的是,培养种质的花青素含量的这种差异在很大程度上影响了遗传学研究以及育种和转基因方法,以改善这两种重要的卵巢作物的花青素含量/概况。所提供的信息应有助于研究人员和育种者制定策略,以应对消费者对营养食品的需求不断增长。
摘要:本文研究了印度和2001 - 2023年区域一级农作物多元化方案的趋势和模式。份额面积,复合年增长率和辛普森多元化指数(SID)用于评估粮食作物,商业作物和高价值作物之间多元化的程度和速度。这项研究表明,在印度,种植模式从粮食植物逐渐转变为商业作物和高价值作物。在大多数州禁止其中一些的州都看到了类似的趋势。然而,在SID中反映的状态中,从粮食到高价值作物的转化并不统一。SID从阿萨姆邦的0.47到马哈拉施特拉邦的0.96不等。与西北和东北州相比,中部和南部各州相对较高。在研究期间,与高价值作物和商业作物相比,食物饮食的CAGR CAGR显着低。 结果表明,印度农业向更经济和生态可持续的农业迁移而不损害国家的粮食安全。 索引:作物多样化,辛普森多元化指数。CAGR显着低。结果表明,印度农业向更经济和生态可持续的农业迁移而不损害国家的粮食安全。索引:作物多样化,辛普森多元化指数。
摘要:全球人口大幅增加,对食物的需求也在增加。为了满足要求,使用现代技术正在种植和收获农作物。此外,粮食作物有一些非生物和生物因素的风险,主要是病原体(土壤或空气传播)。为了增强食品作物的产生,并减少了由生物因素造成的损害,农民社区增加了化肥,杀虫剂和农药的使用。但是,这些可以有效克服问题,但也可以使病原体具有抗药性,影响食物质量并污染环境。为了最大程度地减少致病性攻击并增强农作物的产量,需要适应环境友好的方式。土壤有机修订是抑制土壤传播病原体的最佳预防实践。改善土壤的物理,化学和微生物特征。某些有机修订会增强土壤颗粒,增加孔径,并降低土壤散装密度,从而影响土壤曝气和结构的积极作用。据报道,不同类型的有机修订,例如生物炭,动物粪便,绿肥和堆肥是有效的,可以对不同的病原体引起的疾病有效,并提高植物营养摄取能力并改善土壤健康。本评论的重点是使用不同的土壤有机修正案及其以自然和环保的方式抑制由土壤传播病原体引起的植物疾病的能力。
近年来,过度开采矿石和工业发展是环境中重金属释放的主要因素。结果,粮食作物和水体受到金属污染,可能对人类和其他生物的健康产生多种不利影响。这些金属和准金属,如锌、铜、锰、镍、铬、铅、镉和砷,会扰乱生物体内代谢物合成的生化途径,并导致不同疾病的病因。微生物包括细菌、古细菌、病毒和许多单细胞真核生物,它们可以跨越三个生命域——古细菌、细菌和真核生物——一些微生物,如蓝藻,在重金属的生物吸附率方面表现出很高的效率。蓝藻适合生物修复,因为它们可以在恶劣的环境中生长,对周围环境的负面影响较小,而且管理成本相对较低。蓝藻的结构没有显示出广泛的内部结合膜,因此它可以直接利用生理机制从污染地点吸收重金属。这种生化组成适合管理和生物修复污染环境中的重金属浓度。本综述旨在探索蓝藻在水体中重金属和准金属的生物修复潜力。此外,我们还确定了提高生物修复效果的前景。