PARP家族的ADP-核糖基转移酶包括一组细胞中具有各种调节功能的酶,范围从DNA损伤修复到控制细胞周期进展和免疫反应。多年来,这些知识导致使用PARP1/2抑制剂作为治疗卵巢,泛氧化,前列腺和乳腺癌治疗的主要药物策略,并在编码涉及DNA修复机制的蛋白质的基因中持有突变(合成六)。同时,过去十年在理解受单ADP-核糖基调节的细胞途径方面取得了重大进展,在开发新型选择性化合物以抑制那些赋予具有单ADP-核糖基化活性的parps的细胞中。本综述着重于癌症领域的进展,深入研究了有关酶的一部分(干扰素刺激的PARP)在癌症进展中的作用的最新发现。
晚期糖基化终产物 (AGEs) 活性检测试剂盒 (ab273298) 可用于半定量估计生物体液中的荧光 AGEs 水平。该检测基于特征荧光 (Ex/Em= 360/460 nm),几乎所有 AGEs 都具有这一特征。检测缓冲液的专有成分可明确区分 AGEs 和非氧化蛋白质。一步法检测使用氧化牛血清白蛋白 (AGE-BSA) 作为阳性对照。BSA 用作背景对照,其在检测条件下的荧光定义为任意单位 (AU 或 RFU 样品 / RFU 背景) 中的 1 个相对荧光强度。
Bowdoin College生物化学系摘要:幽门螺杆菌是一种革兰氏阴性的,螺旋形的致病细菌,可在人类的胃中殖民。一旦建立了感染,还可能发生胃癌和消化性溃疡。抗生素一直是致病细菌治疗的强大工具。当前幽门螺杆菌的治疗方法是“三重治疗”,涉及至少两种不同的抗生素。第三种药物通常是质子泵抑制剂(PPI),以帮助胃愈合。但是,这尚未有效。过量使用广谱抗生素会导致细菌病原体中的抗生素耐药机制(Quintana,2022)。广谱抗生素也经常破坏正常的肠道微生物组(Quintana,2022)。需要替代方法来最大程度地减少负面副作用,并选择性地治疗关注的抗生素抗生素“优先病原体”。细菌聚糖由于其独特的单糖和在细菌致病性中的作用而引人注目的治疗靶标。先前的研究表明,细菌糖基化的破坏会导致对宿主细胞,生物膜形成,运动的粘附降低,从而降低了宿主定殖(Quintana,2022)。因此,杜贝实验室的研究重点是靶向覆盖细菌细胞表面的聚糖。伊莎贝拉·金塔纳(Isabella Quintana)最近的工作先前证明了基于稀有细菌单糖的S-糖苷抑制剂,可有效破坏聚糖生物合成和细菌适应性。我复制了一些实验以确认这些发现。我还使用碳水化合物结合蛋白探索了互补角,以确认S-糖苷抑制剂以浓度依赖性方式有效地阻碍了聚糖生物合成。总体而言,小分子抑制剂已证明可以选择性地靶向抗生素耐药性病原体,从而增加了我们治疗感染的工具。项目目标:这项研究旨在评估基于稀有细菌单糖的S-糖苷抑制剂在破坏聚糖生物合成中的有效性,通过测量糖蛋白生物合成和细胞表面聚糖结构的变化。使用的方法:小分子抑制剂 - 细菌单糖,BAC,DATDG和FUCNAC上的苄基 - 糖苷被用作细菌糖基转移酶的底物诱饵。这些细菌单糖是由于它们快速合成支架及其在优先病原体中的利用而选择的(Williams,2020)。目的是评估S-糖苷作为代谢抑制剂的有效性,以阻止细菌糖基化。这是通过1)确认抑制糖蛋白生物合成的抑制作用和2)确认细胞表面聚糖结构的变化。
1 美国加利福尼亚州伯林盖姆糖尿病技术协会 2 美国新罕布什尔州汉诺威达特茅斯盖泽尔医学院 3 美国俄亥俄州克利夫兰 Journey Biosciences 4 美国路易斯安那州新奥尔良儿童医院路易斯安那州立大学医学院儿科内分泌/糖尿病科 5 美国纽约州纽约市纽约大学朗格尼医学中心医学系 6 美国纽约州纽约市纽约大学朗格尼医学中心生物化学与分子药理学系 7 美国纽约州纽约市纽约大学朗格尼医学中心病理学系 8 美国德克萨斯州达拉斯德克萨斯大学西南医学中心内科系心脏病学和老年病学分部 9 美国加利福尼亚州诺瓦托巴克老龄化研究所 10 美国加利福尼亚州诺瓦托 Juvify Bio 11 美国西弗吉尼亚州哈珀斯费里 Kinexum 12美国弗吉尼亚州夏洛茨维尔市 Kitalys 研究所 13 美国加利福尼亚州圣马特奥市米尔斯半岛医疗中心糖尿病研究所
我们专注于 DNA 修复如何帮助预防由 DNA 损伤引起的有害突变和疾病,包括线粒体 DNA (mtDNA),由于线粒体 DNA 靠近呼吸过程中产生的活性氧 (ROS),因此更容易受到损伤。我们的研究旨在增强 NEIL1 DNA 糖基化酶的线粒体定位,该酶是核和线粒体 DNA 碱基切除修复 (BER) 的关键酶。为了解决 NEIL1 内源性表达低和亚细胞定位信息有限的挑战,我们采用了一个计算框架来优化其线粒体靶向信号 (MTS),使我们能够通过共聚焦显微镜观察线粒体中的 NEIL1。通过设计一种名为 339-MTS 的新型 MTS,我们成功地增强了 NEIL1 的线粒体定位,同时保持了其在核中的存在。
纳米颗粒(NPS)是可以携带靶向癌症分子和药物的新型平台,以避免由于标准化疗治疗中非专业药物递送而引起的严重副作用。癌细胞的特征是异常的膜,代谢变化,凝集素受体的存在,葡萄糖转运蛋白(GLUT)过表达以及细胞表面上编程死亡的免疫受体的糖基化。这些特征导致了癌症治疗的几种策略的发展,包括大量碳水化合物模型的NP,这些NP已成为细胞选择性药物输送系统,因为它们会增加纳米粒子 - 细胞相互作用和对携带药物的吸收。当前,NP糖基化的潜力增强了携带的治疗抗肿瘤剂的安全性和效率,并且已广泛认可,并且在该领域中积累了许多信息。本综述旨在重点介绍NP稳定,降低毒性和药代动力学改善的最新进展以及NP糖基化的有希望的潜力,从描述的用于癌症治疗的药物输送系统的分子机制的角度来看。从临床上的概念验证到诊所的治疗价值,糖基化NP所带来的挑战和机会,重点是它们在纳米果的开发中的适用性。
使用大型B细胞淋巴瘤(DLBCL)是最常见的非霍奇金淋巴瘤。基因表达培养揭示了两种主要的生物亚型,即活化的B细胞(ABC)和生发中心B细胞样(GCB)DLCBL。ABC肿瘤依赖于自我抗原诱导的B细胞受体(BCR)的聚类,将慢性活性信号转导向NF-KB和/或PI3激酶途径,并需要干扰素调节因子4(IRF4)的存活率。IRF4是BCR信号传导和NF-KB靶基因的强大指标。
在许多实体瘤中提供了显着的临床益处,在效能和毒性方面的差异可能与其内在的分子特性有关。在这里,我们报告说,CAMRelizumab和Cemiplimab通过与其岩藻糖基化的聚糖进行了相互作用来吸引PD-1。使用蛋白质和细胞糖化工程的组合,我们证明了两种抗体在天冬酰胺N58残基处优先与PD-1结合PD-1。然后,我们提供了证据表明,非小细胞肺癌患者血液中的岩藻糖基化PD-1浓度在不同阶段的疾病阶段有所不同。这项研究说明了表面受体和相关循环形式的糖胶质填充可以为鉴别糖基化变异的不同诱导抗体的发展提供信息,并实现增强的选择性,并为实施个性化治疗方法的实施铺平了选择。
胞嘧啶和5-甲基胞嘧啶的水解脱氨基驱动许多在人类癌症中观察到的过渡突变。脱氨基诱导的诱变中间体包括尿嘧啶或胸腺素加合物误导了鸟嘌呤。虽然存在多种方法来测量其他类型的DNA加合物,但胞质脱氨基加合物却带来了异常的分析问题,并且尚未开发出足够的测量方法。我们在这里描述了一种新型的杂化胸腺素DNA糖基化酶(TDG),该糖基化酶(TDG)由与胸腺糖基化酶在古细菌中发现的29个氨基酸序列组成,该序列是与胸腺素糖基化酶的催化结构域相关的29-氨基酸序列。使用定义的序列寡核苷酸,我们表明杂交TDG具有强大的失误选择性活动,以对脱氨酸u:g和t:g mistairs。我们进一步开发了一种将糖基酶释放的游离碱与oli-Gonucleotides和DNA分离的方法,然后是GC - MS/MS定量。使用这种方法,我们在第一次测量了尿嘧啶,u:g和t:g对的水平。此处介绍的方法将允许测量一类具有生物学上重要的脱氨酸胞嘧啶加合物类别的结构,持久性和修复。
SARS-CoV-2 感染引起的宿主先天免疫反应加剧,不仅导致 COVID-19 患者的组织损伤和多器官衰竭,还会诱导宿主基因组损伤并激活 DNA 损伤反应途径。为了测试个体受损的 DNA 修复能力是否会调节 COVID-19 感染的严重程度,我们分析了公开的患者数据集中的 DNA 修复基因表达,并观察到严重感染的 COVID-19 患者肺中的 DNA 糖基化酶 NEIL2 水平较低。在感染患者、仓鼠和表达 ACE2 受体的人类 A549 (A549-ACE2) 细胞中进一步验证了 NEIL2 水平较低的这一观察结果。此外,与模拟处理的细胞相比,在 A549-ACE2 细胞中递送重组 NEIL2 会导致促炎基因和病毒 E 基因表达降低,并且病毒后代的产量降低。从机制上看,NEIL2 与 SARS-CoV-2 基因组 RNA 的 5'-UTR 协同结合,从而阻止病毒蛋白的合成。总之,这些数据强烈表明,维持基础 NEIL2 水平对于宿主对病毒感染和疾病的保护性反应至关重要。