摘要 神经节苷脂单唾液酸 (GM1) 神经节苷脂沉积症是一种罕见的常染色体隐性遗传病,通常由 GLB1 基因中的有害单核苷酸变异 (SNV) 引起。这些变异导致 b-半乳糖苷酶 (b-gal) 活性降低,从而导致与过早死亡相关的神经退行性病变。目前,尚无有效的 GM1 神经节苷脂沉积症治疗方法。正在进行的三项临床试验旨在提供 GLB1 基因的功能性拷贝以阻止疾病进展。在这项研究中,我们表明 41% 的 GLB1 致病 SNV 可以被腺嘌呤碱基编辑器 (ABE) 取代。我们的结果表明,ABE 可以有效地纠正患者来源的成纤维细胞中的致病等位基因,恢复 b-gal 活性的治疗水平。脱靶 DNA 分析未检测到接受治疗的患者细胞中的脱靶编辑活动,除了基于 3D 结构生物信息学预测的不影响 b-gal 活性的旁观者编辑。总之,我们的结果表明基因编辑可能是治疗 GM1 神经节苷脂沉积症的替代策略。
(a)初次感染几天后,病毒水平和免疫反应观察到了哪种关系?(b)它是否永久清除身体的病毒?给出理由的理由。ans。(a)HIV进入T淋巴细胞并产生后代病毒。血液中释放的后代病毒附着新的T淋巴细胞。这是重复的,并且T淋巴细胞的数量逐渐减少。(b)HIV病毒在体内持续存在,并损害免疫系统。由于T淋巴细胞数量减少,该人开始患有传染病。Q. 20。 乳杆菌的培养板显示蓝色菌落和无色菌落。 解释在菌落颜色中形成这种差异的原理。 2 ans。 蓝白筛选是一种用于鉴定重组细菌的快速有效技术。 它依赖于将乳糖切割成葡萄糖和胶质糖的β-半乳糖苷酶的活性。 酶的失活称为插入失活。 给定质粒的蓝色菌落的发色底物的存在在设置中没有任何新的惰性。 因此,它有助于鉴定具有重组DNA的菌落,而没有质粒的重组DNA。 Q. 21。 尝试A或B(a)(i)的选项估计,如果常绿森林的GPP为400 j /m 2 /天,而150 J /m 2 /m 2 /天的二氧化碳流出该森林,那么该森林中的NPP是什么?Q.20。乳杆菌的培养板显示蓝色菌落和无色菌落。解释在菌落颜色中形成这种差异的原理。2 ans。蓝白筛选是一种用于鉴定重组细菌的快速有效技术。它依赖于将乳糖切割成葡萄糖和胶质糖的β-半乳糖苷酶的活性。酶的失活称为插入失活。给定质粒的蓝色菌落的发色底物的存在在设置中没有任何新的惰性。因此,它有助于鉴定具有重组DNA的菌落,而没有质粒的重组DNA。Q. 21。 尝试A或B(a)(i)的选项估计,如果常绿森林的GPP为400 j /m 2 /天,而150 J /m 2 /m 2 /天的二氧化碳流出该森林,那么该森林中的NPP是什么?Q.21。尝试A或B(a)(i)的选项估计,如果常绿森林的GPP为400 j /m 2 /天,而150 J /m 2 /m 2 /天的二氧化碳流出该森林,那么该森林中的NPP是什么?
RNA Ribonucleic Acid COPI/II Coat Protein Complex I/II DNA Deoxyribonucleic Acid ERGIC Endoplasmic Reticulum-Golgi Intermediate Compartment ER Endoplasmic Reticulum ERES Endoplasmic Reticulum Exit Site B4GalT1 (GalT) β-1,4-Galactosyltransferase 1 GalNAc-T1 (GalNT1) Polypeptide N-乙酰基半乳糖氨基转移酶1 GDP双磷酸GDP GEF GEF鸟嘌呤交换因子GFP绿色荧光蛋白GLC GLC葡萄糖GLCNAC N-乙酰葡萄糖GPCR GPCR GPCR GPCR GPCR GPCR GPCR G蛋白偶联受体GPI甘酸磷酸磷酸甘油酸GPI1aNositolgtp甘油素: (MANII)甘露糖苷酶α-级2A成员1 MHC主要的组织相容性复杂的MPR甘露糖-6-磷酸受体受体PA磷脂型磷脂酸PI磷脂酰肌醇PI4P磷脂酰辛基氨基氨基氨基氨基氨基氨基氨酸4-磷酸ps磷脂型ps磷脂型ps磷脂型ps磷酸磷脂sm磷酸磷酸盐,
抽象目标赫希斯普伦病(HSCR)是一种严重的先天性疾病,影响1:5000活产。HSCR是由于肠神经系统(ENS)祖细胞在胚胎发育过程中完全定植胃肠道的失败而导致的。这会导致远端肠中炎症病,导致运动活性干扰和蠕动受损。当前,唯一可行的治疗选择是对静脉肠道的手术切除。然而,患者经常患有终身症状,经常需要进行多种外科手术。因此,替代治疗选择至关重要。一种有吸引力的策略涉及人类多能干细胞(HPSC)产生的ENS祖细胞的移植。设计ENS祖细胞是使用加速方案从HPSC生成的,并通过单细胞RNA测序,蛋白质表达分析和钙成像的结合详细介绍了。我们使用器官浴收缩力在体内移植向有机型培养的患者衍生的结肠组织后,测试了ENS祖细胞在HSCR结肠中整合和影响功能反应的能力。结果我们发现,我们的方案始终产生具有早期ENS祖细胞的转录和功能标志的细胞群的高收率。移植后,HPSC衍生的ENS祖细胞在外植的人类HSCR结肠样品中整合,迁移并形成神经元/胶质。与对照组织相比,移植的HSCR组织表现出显着增加的基础收缩活性和对电刺激的反应增加。结论我们的发现首次证明了HPSC衍生的ENS祖细胞在人类HSCR患者结肠组织中重新填充和增加功能反应的潜力。
本研究旨在设计具有益生菌潜力的功能性发酵山羊奶,用于治疗代谢疾病。因此,我们鉴定了山羊乳制品中旨在改善炎症、脂质和血糖状况的本土乳酸杆菌。我们使用德氏乳杆菌印度亚种 CRL1447 作为起始菌株,并补充了由 Limosilactobacillus fermentum CRL1446、Lactiplantibacillus paraplantarum CRL1449 和 CRL1472 菌株形成的不同益生菌群落,设计了发酵山羊奶。这些乳酸杆菌之所以被选中,是因为它们对抑制 α-葡萄糖苷酶、胆汁盐水解酶活性、胆固醇吸收和降低秀丽隐杆线虫的甘油三酯百分比具有积极作用。此外,给肥胖小鼠口服乳酸杆菌后,其体重增长显著下降,高血糖和高血脂得到改善。这些结果揭示了这种山羊乳制品作为预防肥胖和相关病症的功能性食品的潜力。山羊奶衍生产品因其市场潜力而脱颖而出。因此,加入新型益生菌的发酵山羊奶代表了一组具有广阔前景的食品,因为它们具有良好的营养和治疗代谢疾病的特性。本研究设计的山羊乳制品可用于预防肥胖人群的血脂异常和高血糖。
简单地说,肥胖可以解释为体内脂肪的沉积,它与健康风险有关,因为它与许多代谢并发症有关。总体目标:描述降糖药在肥胖治疗中的影响。方法:通过探索虚拟健康图书馆 (BVS)、虚拟电子科学图书馆 (SCIELO) 和拉丁美洲和加勒比健康科学文献 (LILACS) 的数据库来收集书目研究的信息。结果与讨论:用于治疗糖尿病并导致体重减轻的主要降血糖药物是磺酰脲类、双胍类、格列奈类、噻唑烷二酮类、二肽基肽酶 IV 抑制剂和 α 葡萄糖苷酶抑制剂。最后的考虑:通过这项研究的开展,可以了解用于减肥的降糖药的作用机制,考虑到这是糖尿病药物治疗的不良反应。值得注意的是,降糖药的益处不仅与减肥有关,还与控制潜在疾病、控制血糖、改善生活质量、改善性格等有关。它不能消除与血糖失调、糖尿病酮症酸中毒和血糖水平突然下降相关的昏迷等风险。关键词:降糖药,肥胖,减肥,糖尿病,司美鲁肽。
糖尿病是一种普遍且使人衰弱的代谢疾病,其标志性的血糖水平持续升高,如果不受管理,可以在一系列严重的并发症中达到顶峰。类黄酮,源自植物的多酚化学物质,由于其抗糖尿病性质而引起了糖尿病研究领域的广泛关注。这些天然存在的物质是结构上的15碳,在水果,蔬菜和其他植物性饮食中广泛分布,可提供许多积极的好处,包括调节许多胰岛素和葡萄糖稳态的能力。这些化合物根据其结构差异分为六个主要子类。许多体内和体外研究研究了类黄酮的抗糖尿病潜力。已经发现类黄酮可以调节诸如醇葡萄糖苷酶和酰基酶等酶,这是降低血糖水平的关键酶。新兴的证据表明,类黄酮可以通过调节葡萄糖代谢,胰岛素敏感性和炎症的各种细胞信号通路的能力来发挥其抗糖尿病作用。已证明类黄酮含有抗炎和抗氧化特性。这些品质对于减少炎症和氧化应激至关重要,这对于糖尿病的发作至关重要。本综述的目的是考虑到类黄酮抗糖尿病作用的细胞和分子机制的全面阐明,考虑到它们对参与糖尿病涉及的各种代谢途径的潜在影响。
摘要:庞贝病是一种遗传性神经肌肉疾病,由溶酶体酶酸性 α-葡萄糖苷酶 (GAA) 缺乏引起。最严重的形式是婴儿期庞贝病,出生后不久即出现心肌病、呼吸衰竭和骨骼肌无力症状。晚发型庞贝病的特点是病情进展较慢,主要影响骨骼肌。尽管酶替代疗法管理方面最近取得了进展,但使用这种治疗方法仍存在一些局限性,包括免疫原性并发症的风险、无法穿透中枢神经系统组织以及需要终生治疗。下一波有希望的单一疗法干预措施是基因疗法,它正在进入临床转化阶段。腺相关病毒 (AAV) 载体和慢病毒载体 (LV) 介导的造血干细胞和祖细胞 (HSPC) 基因治疗都有可能为这种多系统疾病提供有效的治疗。优化病毒载体设计,提供组织特异性表达和 GAA 蛋白修饰以增强分泌和摄取,已导致临床前疗效和安全性数据改善。在这篇综述中,我们重点介绍了基因治疗的发展,特别是 AAV 和 LV HSPC 介导的基因治疗技术,以潜在地解决神经肌肉相关庞贝病病理的所有组成部分。
这项研究的目的是使用链霉亲素诱导的糖尿病模型以及其α淀粉酶和α糖苷酶抑制活性来评估抗糖尿病性churna的抗糖尿病特性。[1]特别普遍的代谢疾病之一,糖尿病影响全球2.8%,预计到2025年将达到5.4%。草药长期以来一直被视为一种极为宝贵的药物。结果,它们越来越多地在当代护理中出现。因此,基于综述,药物降低血糖水平的能力主要归因于多酚,类黄酮,萜类化合物,香豆素和其他成分的存在。抗糖尿病冠 - 由翼龙,阿扎尔达里奇塔(Azardirachta),azardirachta,ocimum sanctum,syzygium cumini,trigonella foenum graceum,emblica officinalis,glycyrrhiza glababra,curcyrias salligr sall sall sall sall,抗糖尿病活动。[2]使用淀粉碘和二硝基水杨酸(DNSA)方法进行体外抗糖尿病筛查,该方法涉及α-淀粉酶抑制和IC 50值。[3]粉末特性像灰值,安息角度,密度,散装密度,挖掘密度,lod,pH值一样。每个参数已超过标准限制。
婴儿型庞贝病 (IOPD) 是由溶酶体酸性 α-葡萄糖苷酶 ( Gaa ) 突变引起的,表现为快速进展的致命性心脏和骨骼肌病,而合成的 GAA 静脉输注不能完全缓解这种症状。目前可用的小鼠模型不能完全模拟人类 IOPD,而是表现出骨骼肌病和晚发型肥厚性心肌病。由于该模型带有 Cre-LoxP 诱导的小鼠 Gaa 基因外显子破坏,因此也不适用于基于基因组编辑的治疗方法。我们报告了一种新型小鼠 IOPD 模型,该模型利用 CRISPR-Cas9 同源重组生成,携带直系同源 Gaa 突变 c.1826dupA (p.Y609 * ),从而导致人类 IOPD,并早期出现严重肥厚性心肌病。我们证明了使用单链寡核苷酸供体的双 sgRNA 方法对 Gaa c.1826 基因座具有高度特异性,并且没有基因组脱靶效应或重排。心脏和骨骼肌缺乏 Gaa mRNA 和酶活性,并积累了高水平的糖原。小鼠表现出骨骼肌无力,但没有经历早期死亡。总之,这些结果表明 CRISPR-Cas9 产生的 Gaa c.1826dupA 小鼠模型重现了人类 IOPD 的肥厚性心肌病和骨骼肌无力,表明其可用于评估新型疗法。
