炎症反应涉及几种细胞类型的激活,以使其由大量药物引起的侮辱,并维持组织同种异体。一方面,涉及促炎性反应的细胞,例如炎性M1巨噬细胞,Th1和Th17淋巴细胞或活化的小胶质细胞,必须迅速提供能量以燃料燃料流量,这基本上是由糖溶解和高乳液产生来完成的。是涉及免疫调节和炎症分辨率的调节性T细胞或M2巨噬细胞,优先使用TCA循环将脂肪酸氧化作为能量生产的主要来源。在这里,我们讨论了糖酵解代谢在炎症反应的不同步骤中的影响。最后,我们回顾了多种分子机制,这些机制可以解释糖酵解代谢产物与促炎性弹药的关系之间的关系,包括信号事件,表观遗传重塑,转移后调节调节和后转化后的修改。炎症过程是许多与年龄相关疾病(例如心血管和神经退行性疾病)的共同特征。发现免疫代谢可能是炎症的主要调节剂,可以通过操纵血管和免疫细胞代谢的操纵来扩展用于治疗炎症相关病理的大道。
简单摘要:由于HER2细胞表面蛋白的高水平,大约三分之一的乳腺癌被分类为HER2阳性。靶向HER2的药物主要是成功的,但是一旦治疗完成,这种类型的癌症就会以高频回来。高水平的HER2还会导致雷帕霉素(MTOR)和增强葡萄糖代谢的机理靶标的激活升高,这两者都支持癌症的生长。基于此,已经开发出一种药物来阻止MTOR并在临床研究中或与针对HER2的药物结合进行测试。这些治疗方法是成功的,但具有更大的毒性作用,并且癌症恢复的可能性更高。使用在HER2阳性乳腺癌患者中模仿葡萄糖剥夺的药物尚未进行测试;然而,临床前研究表明,通过将模仿葡萄糖剥夺与MTOR抑制剂的药物相结合,可以减少HER2阳性乳腺肿瘤。
这些金属从矿山,矿石加工单元和其他类似行业的提取过程每年在化学过程中产生大量的废水。废水中相对较高的or浓度浓度清楚地表明了其净化的必要性,以保护环境的健康[8]。去除重金属和放射性金属的常见方法包括一种或一种蒸发方法的组合,化学沉积[9],电化学处理[10],离子交换[11,12],溶剂提取[13,14],反渗透[15],膜过程[16-18],以及膜过程[16-18],以及ADSOREPTIONS [19-–21]。这些方法中的每一种都有优点和缺点,根据条件,选择了每种方法或它们的组合。吸附过程用于从水溶液中去除重金属。因此,由于其经济学,灵活性和可重复性,吸附方法比其他方法更有趣[22-24]。
能量代谢重编程是癌症的重要标志,为探索癌症的发展提供了新的研究视角,但卵巢癌抗糖酵解治疗的最关键靶点仍不清楚。因此,本研究利用Oncomine、GEPIA和HPA数据库,结合不同组织类型的卵巢癌临床标本,综合评估卵巢癌中糖酵解相关代谢物转运体和酶的表达水平。我们选取Kaplan-Meier Plotter数据库中预后价值最高的磷酸甘油酸激酶1(PGK1)进行后续验证。免疫化学检测证实PGK1在卵巢癌中高表达,PGK1表达水平是卵巢癌患者生存和预后的独立危险因素。功能分析显示PGK1表达水平与中性粒细胞浸润呈正相关。细胞实验证实,抑制卵巢癌细胞中PGK1的表达可降低上皮间质转化(EMT)过程,导致细胞迁移和侵袭能力丧失。小分子NG52剂量依赖性地抑制卵巢癌细胞的增殖。此外,NG52通过抑制PGK1活性来减少EMT过程并逆转Warburg效应。因此,PGK1是卵巢癌抗糖酵解治疗的一个有吸引力的分子靶点。
所有活生物体在其中央代谢中都有类似的反应,为所有19个基本构件和降低力量提供了前体。确定糖酵解20的替代代谢途径是否可以在大肠杆菌中运行,我们在硅设计,合理的工程和自适应21实验室进化中互补。首先,我们使用了一个基因组规模模型,并在该生物体的22个代谢网络中鉴定了两种潜在途径,取代了规范的Embden-Meyerhof-Parnas(EMP)糖酵解,将23个转化为有机酸的磷酸化。这些糖酵解路线之一是通过甲基乙二醇(通过丝氨酸生物合成和降解)进行的。然后,我们在大肠杆菌菌株中实施了两种途径25具有缺陷的EMP糖酵解。令人惊讶的是,通过甲基乙二醇的途径立即在26个三氧磷酸异构酶缺失菌株中培养在甘油上。相比之下,在磷酸甘油酸激酶27缺失菌株中,对于实现功能性28甲基甘氨酸途径的过表达是必要的。此外,我们设计了“丝氨酸分流”,该“丝氨酸分流”通过丝氨酸生物合成和降解转换为丙酮酸,绕过烯醇酶缺失。最后,为了探索30种这些替代方案中的哪些替代方法,我们使用烯醇酶缺失菌株进行了自适应实验室31进化研究。证明进化的突变体使用丝氨酸分流。32我们的研究揭示了代谢途径的灵活性重新定位,以建立新的代谢产物链接和重新连接33中央代谢。34
引言炎症引起的神经变性是疾病进展的主要驱动力和多发性硬化症患者(PWMS)(1,2)的神经系统疾病的积累,这是中枢神经系统(CNS)中最常见的炎症性疾病(CNS)(CNS)(CNS)(3)。MS据信是从渗透CNS的自动反应性T细胞开始,导致脱髓鞘和神经轴突损伤(4)。同时,中枢神经系统中的浸润和常驻的髓样细胞具有低度,闷烧的炎症,导致持续的神经元丧失(5,6)。尽管免疫原样药物有效地减少了免疫细胞的浸润和作用,但PWMS继续经历渐进式脑和脊髓量丧失和神经系统缺陷,因为这些治疗方法无法解决潜在的闷烧的炎症(7)。Neurodegeneration in pwMS and its mouse model, the exper- imental autoimmune encephalomyelitis (EAE), share similarities with other primary neurodegenerative diseases such as Alzhei- mer's disease (AD) and Parkinson's disease (PD) (8) , including intracellular protein aggregates (9) , mitochondrial dysfunction
我们从北京维通利华实验动物技术有限公司购买20只7周龄雄性BALB/c裸鼠。动物饲养在25±3 ℃、60%湿度、12 h光照/黑暗循环的受控环境中。小鼠自由进食和饮水。通过右大腿皮下注射shRNA转染HepG2细胞形成异种移植瘤。将小鼠分为两组(n=8):对照组和CaMKK β -shNRA组。每5天测量一次肿瘤体积,直至30天。通过腹腔注射戊巴比妥钠(200 mg/kg体重)处死小鼠。收获肿瘤用于后续实验。所有动物实验均经川北医学院附属医院伦理委员会批准(编号2020053),并按照美国国立卫生研究院(NIH)的规定进行
摘要。锥虫会引起被忽视的热带疾病,本综述讨论了针对糖酵解和糖体内部蛋白质易位作为治疗这些感染的策略的潜力。不同的研究表明,糖酵解是克氏锥虫、布氏锥虫和利什曼原虫等寄生虫的主要能量来源,它们的糖酵解酶与人类糖酵解酶有很大不同,为选择性药物开发提供了机会。抑制糖酵解可导致寄生虫大量死亡,因为即使部分阻断该途径也会破坏三磷酸腺苷的产生,而三磷酸腺苷对于寄生虫的生存至关重要。本综述还研究了跨糖体膜的蛋白质易位机制,特别是过氧化物酶的关键作用;糖体蛋白的错误定位会对寄生虫的生存产生不利影响。了解蛋白质输入的机制和糖体酶的独特特性可以促进针对这些特定目标的合理药物设计。总体而言,本综述强调需要创新的治疗方法来有效应对锥虫病带来的挑战,并主张进一步研究这些寄生虫的代谢脆弱性,以开发有针对性的有效治疗方法。
摘要:癌细胞发生代谢重编程,包括葡萄糖代谢、脂肪酸合成和谷氨酰胺代谢率增加。这三种主要代谢途径的增强与糖酵解密切相关,糖酵解被认为是癌细胞代谢的核心组成部分。越来越多的证据表明,功能失调的糖酵解通常与癌症治疗中的耐药性有关,异常的糖酵解在耐药癌细胞中起着重要作用。针对这些异常的药物开发研究已导致肿瘤治疗效果的提高。本综述讨论了导致癌细胞耐药的糖酵解靶点的变化,包括己糖激酶、丙酮酸激酶、丙酮酸脱氢酶复合物、葡萄糖转运蛋白和乳酸,以及潜在的分子机制和相应的新治疗策略。此外,还介绍了氧化磷酸化增加与耐药性之间的关联,这是由代谢可塑性引起的。鉴于异常糖酵解已被确定为耐药肿瘤细胞的共同代谢特征,针对糖酵解可能是开发新药以造福耐药患者的新策略。
摘要阿尔茨海默氏病构成了由于患者的逐步认知下降和缺乏治疗性治疗而构成了重大的全球健康挑战。当前的治疗策略主要基于胆碱酯酶抑制剂和N-甲基-D-天冬氨酸受体拮抗剂,在不停止疾病进展的情况下提供有限的症状缓解,强调了迫切需要解决阿尔茨海默氏病的主要机制的新型研究方向。最近的研究提供了对糖酵解的关键作用的见解,糖酵解是大脑中基本能量代谢途径,在阿尔茨海默氏病的发病机理中。神经元和神经胶质细胞中糖酵解过程的改变,包括小胶质细胞,星形胶质细胞和少突胶质细胞,已被确定为阿尔茨海默氏病病理局势的重要促进者。糖酵解变化会影响神经元的健康和功能,从而为治疗干预提供了有希望的靶标。本综述的目的是巩固有关与阿尔茨海默氏病有关的糖酵解修饰的当前知识,并探讨这些异常有助于疾病发作和进展的机制。全面关注糖酵解功能障碍影响阿尔茨海默氏病病理学的途径应提供对潜在的治疗靶标和策略的见解,从而为开创性治疗铺平道路,强调了解代谢过程以寻求澄清和管理阿尔茨海默氏病的重要性。关键词:阿尔茨海默氏病;神经胶质细胞;糖酵解;神经元代谢;发病;治疗目标