主要应用 • 通过 DLW 和 2PP 进行快速非接触式原型制作 • 微系统技术中的光学应用 • 用于湿法和干法蚀刻工艺的蚀刻掩模 • 用于电镀的模具 • 用于印章制造/模板制造的模具
主要应用 • 通过 DLW 和 2PP 进行快速非接触式原型制作 • 微系统技术中的光学应用 • 用于湿法和干法蚀刻工艺的蚀刻掩模 • 用于电镀的模具 • 用于印章制造/模板制造的模具
主要应用 • 通过 DLW 进行快速非接触式原型设计 • 微系统技术中的光学应用 • 用于湿法和干法蚀刻工艺的蚀刻掩模 • 用于电镀的模具 • 用于印章制造/模板制造的模具
描述 Novagard RTV 800-630 是一种紫外/双固化有机硅灌封化合物。这种无腐蚀性、单组分有机硅在紫外光源下固化为柔软的橡胶状凝胶。 特性和优点 - 极快的紫外固化 - 单组分 - 无氧抑制 - 室温固化 - 无溶剂配方 - 无腐蚀性副产品 - 无粘性表面 紫外应用 所有实验室实验均使用在 125 和 300 WPI 下工作的汞蒸气灯进行。要获得无粘性表面,需要在 500 mW/cm 2 下曝光 0.30 秒,或在 245 mW/cm 2 下曝光 0.60 秒。与任何紫外固化系统一样,在较低强度的灯条件下需要更长的曝光时间。 可用性 请咨询 Novagard 销售代表以了解包装选项和容量要求。储存 Novagard ® RTV 800-630 可在原装未开封容器中,在 80 o F 或以下的温度下储存长达三个 (3) 个月。
Liao, J.、Sihler, H.、Huey, LG、Neuman, JA、Tanner, DJ、Friess, U.、Platt, U.、Flocke, FM、Orlando, JJ、Shepson, PB、Beine, HJ、Weinheimer, AJ、Sjostedt, SJ、Nowak, JB、Knapp, DJ、Staebler, RM、Zheng, W.、Sander, R.、Hall, SR 和 Ullmann, K.:通过化学电离质谱法和长程差分光学吸收光谱法对北极 BrO 测量结果进行比较,《地球物理研究杂志-大气》,116,Artn D00r02 325
探究凝聚态物质的微观电子结构。虽然可以从光电效应的物理学中轻松理解其基本原理,但在将 PES 信号转换为有用信息之前,还需要进行许多假设和近似。假设学校的学员已经具备该方法的一些基本知识(作为实践者或理论家),我的入门讲座将尝试概述 PES 方法论的核心概念和思想,并为后续的 SUCCESS 讲座计划做好准备。除了显而易见的要点之外,我还将尝试涉及一些特殊问题,这些问题在标准文献中并不常见,但随着该技术发展到新的光子强度和/或能量范围,这些问题可能会变得相关。我计划涵盖的主题包括(不一定按此顺序,只要时间允许):
Izza Usman Bajwa 1 , Samuel Sigaud 1* 1 Accumol Inc.,加拿大艾伯塔省卡尔加里 * samuel.sigaud@accumol.com 摘要 磁性粒子通常用于从血液样本中分离特定类型的细胞。从这些细胞中提取的基因组 DNA 中的残留粒子会干扰紫外吸收分光光度法的浓度测量。在本研究中,我们在谱系特异性嵌合体分析工作流程中确定了紫外分光光度法 DNA 定量的不准确程度。我们发现残留磁性粒子和 RNA 的存在会导致对 DNA 浓度的估计过高。简介使用磁性粒子从血液样本中分离特定类型细胞是诊断或免疫遗传学实验室的常用技术。例如,谱系特异性嵌合体分析的典型工作流程包括从血液样本中分离 T 淋巴细胞、髓细胞或其他细胞类型,然后提取基因组 DNA,然后进行 PCR 或 qPCR 1 。提取后通常会检查 DNA 浓度和质量,以确保下游 PCR 反应在最佳条件下进行。根据 DNA 提取方法,在最终 DNA 样本中可能会发现用于细胞分离步骤的残留磁性粒子。虽然这些粒子通常不会干扰后续的 PCR 反应,但它们可能会影响 DNA 定量步骤。紫外吸光度分光光度法是评估 DNA 浓度和纯度最广泛的方法。它速度快,不需要使用标准曲线或特殊试剂。它使用非常少量的 DNA,尤其是使用无比色皿分光光度计(如 NanoDrop 仪器(ThermoFisher Scientific))进行时。然而,紫外吸光度对 DNA 2 不具有选择性。浓度测量可能会受到污染物的影响,例如 RNA、蛋白质、DNA 提取过程中使用的化学品或用于细胞分离的磁性粒子。为了克服这些问题,已经开发出荧光 DNA 结合染料 3。这些化合物与双链 DNA 结合时会显著增强荧光。它们具有高度的特异性和灵敏度,现在被认为是 DNA 定量的黄金标准。然而,与紫外分光光度法相比,荧光测量更耗时,需要使用昂贵的试剂,并需要实现 DNA 标准曲线。由于这些原因,当许多样本需要快速处理时,例如在分子诊断实验室中,紫外分光光度法仍然是确定 DNA 浓度的首选方法。本研究的目的是确定在谱系特异性嵌合体分析工作流程中紫外分光光度法 DNA 定量的不准确程度。我们研究了残留磁粒子对 DNA 浓度和质量测量的影响,并提出了提高测量准确性的建议。
摘要 — 紫外 (UV) 激光器被提议作为无接触航天器电位传感中低能电子束的替代品。由于它们对静电环境不敏感,理论上支持将其用作光电子源,从而实现更稳健和可控的系统。在代表性应用场景中验证了该方法的可行性,并讨论了其与航天器电荷控制和材料识别的相关性。提出了一种简化的光发射框架,并通过粒子追踪模拟用真空室实验进行了验证,表明这种框架可用于确定从目标表面发出的光电子的空间分布及其幅度的合理估计。还讨论了将此方法与高能电子束相结合的可能性,以增强传感过程的稳健性和准确性。最终,该分析支持在地球同步轨道和深空的各种航天器充电技术中使用紫外激光器。
全局方法文件 所谓的全局方法定义了完整的分析。它作为单个文件存储在磁盘上。从磁盘加载方法可设置数据采集、数据评估和校准的所有参数,无需操作员交互,从而消除了出错的可能性。出于安全考虑,该软件还包括两个由密码分隔的操作级别。在管理员级别,只有通过密码才能访问,方法可以开发、编辑和存储。在操作员级别,对于常规测试,可以加载和运行方法。可以更改参数,但此方法生成的任何报告或任何结果都将包含已修改标志。在操作员级别,方法无法保存,因此操作员不可能更改方法然后以其原始名称重新保存。此外,如果当前系统的任何方面与定义的方法不兼容,系统将阻止任何进行测量的尝试。
摘要 强近红外 (NIR) 激光脉冲与宽带隙电介质相互作用会在极紫外 (XUV) 波长范围内产生高次谐波。这些观测为固体中的阿秒计量提供了可能性,精确测量各个谐波相对于 NIR 激光场的发射时间将大有裨益。本文表明,当从氧化镁晶体的输入表面检测到高次谐波时,对 XUV 发射的双色探测显示出明显的同步性,这与块体固体中电子-空穴再碰撞的半经典模型基本一致。另一方面,源自 200 μ m 厚晶体出口表面的谐波双色光谱图发生了很大变化,表明传播过程中激光场畸变的影响。我们对 XUV 能量下亚周期电子和空穴再碰撞的跟踪与阿秒脉冲固态源的开发有关。
