摘要背景乳腺癌 (BC) 是全球最常见的恶性肿瘤,也是女性癌症相关死亡的主要原因。Sirtuin 抑制剂 (SIRTi) 属于组蛋白去乙酰化酶抑制剂组 (HDI),是一种有效的表观遗传药物,已被研究用于治疗不同的临床疾病,包括血液系统恶性肿瘤和实体瘤。方法在 MCF7 管腔和 MDA-MB-231 三阴性乳腺癌 (TNBC) 细胞中测定了单独使用或与标准化疗紫杉醇 (PAX) 联合使用 cambiol (CAM; SIRTi) 对活力 (MTT 测定)、增殖 (BrdU 测定)、诱导凋亡和细胞周期停滞 (FACS 分析) 的影响。采用精确而严格的药效动力学方法——等效线图法,确定 CAM 和 PAX 之间的药理药物相互作用类型,以确定使用各种固定剂量比所分析药物之间是否存在协同作用、加成作用或拮抗作用。结果 CAM 和 PAX 以 1:1 的固定比例组合对 MCF7 和 MDA-MB-231 BC 细胞活力产生加成作用。两种活性药物单独使用均降低了 BC 细胞的活力和增殖,并诱导细胞凋亡和细胞周期停滞。这些影响在 MCF7 细胞中比在 MDA-MB-231 BC 细胞中更为明显。此外,与单独使用 PAX 相比,CAM 与 PAX 联合使用可增强抗癌活性。结论 CAM 可被视为一种潜在的治疗剂,单独使用或与 PAX 联合治疗管腔或 TNBC。
摘要。苹果树(Malus housea borkh。'Spartan'在1976年在马里兰州贝尔茨维尔的一个果园种植的mm 106根含量上,用紫杉醇A gibberellin生物合成抑制剂治疗,1982年春季,再次于1983年。在1982年,Paclo Butrazol [50湿粉(WP)]在1982年5月4日,14日和25日在333 mg litt1上应用于叶子喷雾。4月27日1983年,这些树干上涂有75 g升的紫杉醇1。紫杉醇在1983年没有抑制芽的增长,但在1984年降低了芽的生长。在春季,从冬季休眠时期到春季的生长恢复,在所有采样的日期中,经氯唑处理的木材的碳水化合物含量通常更高。在冬季采样日期中发现淀粉和可溶性碳水化合物之间的负相关系数,而在春季生长恢复期间,正相关系数很明显。在两年没有抑制生长(1983)或抑制(1984)时,通过治疗引起的碳水化合物的增加相似,表明紫杉醇对碳水化合物的代谢和生长有影响。使用的化学名称:P - [(4-氯苯基)甲基] -A-(L,l-二甲基乙基)-L // - 1,2,4--Triazole-1-乙醇(紫杉醇)。
摘要:乳腺癌是一种异质性疾病,具有不同的内在亚型。乳腺癌中最具侵袭性的亚型——三阴性乳腺癌(TNBC)具有高度异质性和转移率、预后不良以及由于缺乏雌激素受体、孕激素受体和人表皮生长因子受体2而缺乏治疗靶点的特点。靶向治疗已被批准用于许多其他癌症甚至其他乳腺癌亚型,但TNBC的治疗选择仍然主要局限于化疗。因此,需要新的、更有效的治疗方案。联合化疗与两种或两种以上的活性药物被认为是一种有前途的抗肿瘤工具,以获得更好的治疗反应并减少治疗相关的不良反应。该研究表明,在BT-549、MDA-MB-468和HCC1937 TNBC细胞系中,常用于TNBC治疗的细胞抑制剂紫杉醇(PAX)和sirtuin抑制剂:cambinol(CAM)具有拮抗作用。通过精确而严格的药效动力学方法-等效线分析确定药理相互作用的类型。分别利用 3-(4,5-二甲基噻唑-2-基)-2,5-二苯基四唑溴化物 (MTT) 和 5-溴-2 ' -脱氧尿苷 (BrdU) 测定法确定 CAM 单独使用或与 PAX 联合使用的细胞毒性和抗增殖作用。通过流式细胞术 (FACS) 确定单独或联合使用 PAX 和 CAM 治疗后 TNBC 细胞系中细胞凋亡的诱导情况,即具有活性 caspase-3 的细胞数。据观察,两种药物单独使用均会抑制细胞增殖并诱导细胞凋亡;然而,联合使用它们可改善所有分析的 TNBC 细胞系中的抗增殖和促凋亡作用。我们的结果表明,CAM 和 PAX 联合使用会产生拮抗作用,从而限制抗癌功效,并显示出临床前测试的重要性。
紫杉醇类药物(紫杉醇和多西他赛)在晚期肉瘤的治疗中起着重要作用。白蛋白结合型紫杉醇(nab-paclitaxel)是一种新型紫杉醇,与紫杉醇和多西他赛相比具有许多优势。nab-paclitaxel目前被批准用于治疗晚期乳腺癌、非小细胞肺癌和胰腺癌。但尚未见nab-paclitaxel在肉瘤中的疗效综述。本文首先比较了nab-paclitaxel、紫杉醇和多西他赛的异同,然后根据已报道的临床试验结果总结了nab-paclitaxel对各种非肉瘤恶性肿瘤的疗效,并总结了nab-paclitaxel在肉瘤中的疗效和临床研究进展。本综述将为nab-紫杉醇在临床肉瘤治疗研究中的应用以及临床试验的设计提供参考。
目的:紫杉醇是一种用于治疗多种癌症(包括乳腺癌)的药物分子。由于其疗效高,它是首选的化疗药物之一。然而,已观察到紫杉醇使用相关的许多副作用,例如过敏、脱发、腹泻和疼痛。方法:我们评估了当紫杉醇在聚合物纳米粒子内主动靶向乳腺癌肿瘤时的治疗效果。据报道,使用各种纳米粒子将紫杉醇靶向递送到肿瘤部位是一种改进的细胞毒性策略。在本研究中,聚乳酸-乙醇酸 (PLGA) 纳米粒子被用作药物载体,核仁素适体被用作亲和力靶向剂。结果:在直径为 238 nm 的 PLGA 纳米粒子的合成过程中,紫杉醇分子被包裹。紫杉醇的包封率和负载率分别为 97% 和 21%。用核仁素适体对载有紫杉醇的 PLGA 纳米粒子进行功能化,并确定了它们对两种细胞系(E0771 和 4T1)培养的小鼠癌细胞的靶向能力。选择 E0771 细胞系来制备异体乳腺癌小鼠模型。对 PLGA 纳米粒子中的靶向紫杉醇的评估表明,与小鼠模型的游离紫杉醇治疗组相比,其抑制肿瘤生长的效果提高了 38%。结论:通过在肿瘤靶向聚合物纳米粒子内装载紫杉醇等抗癌药物可以增强其化疗效果。关键词:DNA 适体、纳米粒子、紫杉醇、药物输送系统
摘要 胃腺癌 (GAC) 的标准化疗方案疗效有限且毒性较大。在先前的 GAC 临床前研究中,白蛋白结合型紫杉醇已显示出良好的抗肿瘤作用。多韦替尼抑制受体酪氨酸激酶家族成员,包括 FGFR、VEGFR 和 PDGFR,并在包括 GAC 在内的许多实体瘤中表现出抗肿瘤作用。基于白蛋白结合型紫杉醇的抗有丝分裂、抗基质和 EPR 作用,我们研究了多韦替尼在多种 GAC 临床前模型中对白蛋白结合型紫杉醇反应的增强作用。在 MKN-45 皮下异种移植中,白蛋白结合型紫杉醇和多韦替尼对肿瘤生长的抑制率分别为 75% 和 76%。多韦替尼加白蛋白结合型紫杉醇对肿瘤生长有附加抑制作用,导致肿瘤消退(恢复至原始值的 85%)。与对照组(23 天)相比,多韦替尼单药治疗仅使动物存活率(25 天)略有改善,而白蛋白结合型紫杉醇单药治疗或多韦替尼加白蛋白结合型紫杉醇联合治疗分别使动物寿命显著延长 83%(42 天)和 187%(66 天)。皮下肿瘤的 IHC 分析显示,多韦替尼降低了肿瘤细胞增殖和肿瘤血管。体外研究表明,多韦替尼和白蛋白结合型紫杉醇单独使用可降低肿瘤细胞增殖,联合治疗可产生叠加效应。 MKN-45 和 KATO-III 细胞的免疫印迹分析显示,多韦替尼降低了磷酸化 FGFR、磷酸化 AKT、磷酸化 ERK、磷酸化 p70S6K、磷酸化 4EBP1、Bcl-2,并增加了裂解 PARP-1、裂解 caspase-3、p27、Bax、Bim,联合治疗具有附加作用。这些结果表明,FGFR/VEGFR/PDGFR 抑制剂多韦替尼有可能增强白蛋白结合型紫杉醇的抗肿瘤作用,这对临床 GAC 治疗的发展具有重要意义。
Amy S. Clark 1 ✉ 、Christina Yau 2 、Denise M. Wolf 2 、Emanuel F. Petricoin 3 、Laura J. van ' t Veer 2 、Douglas Yee 4 、Stacy L. Moulder 5 、Anne M. Wallace 6 、A. Jo Chien 2 、Claudine Isaacs 7 、Judy C. Boughey 8 、Kathy S. Albain 9 、Kathleen Kemmer 10 、Barbara B. Haley 11 、Hyo S. Han 12 、Andres Forero-Torres 13 、Anthony Elias 14 、Julie E. Lang 15 、Erin D. Ellis 16 、Rachel Yung 17 、Debu Tripathy 5 、Rita Nanda 18 、Julia D. Wulfkuhle 5 、Lamorna布朗-斯维加特 2 、罗莎·I·加拉格尔 5 、特雷莎·赫尔斯坦 6 、艾琳·罗施 6 、谢丽尔·A·尤因 2 、迈克尔·阿尔瓦拉多 2 、艾琳·P·克兰 7 、梅雷迪思·巴克斯顿 19 、朱莉娅·L·克伦内尔 19 、梅丽莎·保洛尼 19 、斯米塔·M·阿萨雷 2 、艾米·威尔逊 2 、 Gillian L. Hirst 2 , Ruby Singhrao 2 , Katherine Steeg 2 , Adam Asare 2 , Jeffrey B. Matthews 2 , Scott Berry 19 , Ashish Sanil 19 , Michelle Melisko 2 , Jane Perlmutter 20 , Hope S. Rugo 2 , Richard B. Schwab 6 , W. Fraser Symmans 5 , Nola M. 希尔顿 2 , 唐纳德A.贝里 19 、劳拉 J.埃瑟曼 2 和安吉拉 M.德米歇尔 1
1 Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran 2 Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda.卡拉奇国际化学与生物科学中心,卡拉奇大学,卡拉奇,巴基斯坦17药物学和生物技术系,伊朗伊朗萨希德·贝什蒂医学科学院药学学院,伊朗伊朗伊朗医学科学院,伊朗18号医学化学,药学,药学学院,Shahid Beheshti医学科学大学,德黑兰,伊朗20 BANAT的农业科学和兽医医学“罗马尼亚国王迈克尔一世”,来自Timisoara,Timisoara,Timisoara,Timisoara,Romania,罗马尼亚,罗马尼亚21生物学系21 Sivas Cumhuriyet University,58140 Sivas,土耳其23 Craiova医学与药房临床药学系,200349 Craiova,Romania卡拉奇国际化学与生物科学中心,卡拉奇大学,卡拉奇,巴基斯坦17药物学和生物技术系,伊朗伊朗萨希德·贝什蒂医学科学院药学学院,伊朗伊朗伊朗医学科学院,伊朗18号医学化学,药学,药学学院,Shahid Beheshti医学科学大学,德黑兰,伊朗20 BANAT的农业科学和兽医医学“罗马尼亚国王迈克尔一世”,来自Timisoara,Timisoara,Timisoara,Timisoara,Romania,罗马尼亚,罗马尼亚21生物学系21 Sivas Cumhuriyet University,58140 Sivas,土耳其23 Craiova医学与药房临床药学系,200349 Craiova,Romania卡拉奇国际化学与生物科学中心,卡拉奇大学,卡拉奇,巴基斯坦17药物学和生物技术系,伊朗伊朗萨希德·贝什蒂医学科学院药学学院,伊朗伊朗伊朗医学科学院,伊朗18号医学化学,药学,药学学院,Shahid Beheshti医学科学大学,德黑兰,伊朗20 BANAT的农业科学和兽医医学“罗马尼亚国王迈克尔一世”,来自Timisoara,Timisoara,Timisoara,Timisoara,Romania,罗马尼亚,罗马尼亚21生物学系21 Sivas Cumhuriyet University,58140 Sivas,土耳其23 Craiova医学与药房临床药学系,200349 Craiova,RomaniaArturo Prat 2120, Iquique 1110939, Chile 3 Research Institute of Biotechnology & Medical Converged Science, Dongguk University, Goyangsi, Republic of Korea 4 Department of Post-Harvest Technology, College of Horticulture and Forestry, Central Agricultural University, Pasighat, 791102 Arunachal Pradesh, India 5 Environment and Sustainability Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, 751013 Odisha, India 6 Applied Microbiology, Biotechnology and Nanotechnology Laboratory, Department of Microbiology, Edo University Iyamho, PMB 04, Auchi, Edo State, Nigeria 7 Cardiometabolic Research Unit, Department of Physiology, College of Health Sciences, Bowen University, Iwo, Osun State, Nigeria 8 Department of Plant塔拉斯·舍文科(Taras Shevchenko)生物学系,基辅塔拉斯·舍申科(Taras Shevchenko),基辅,乌克兰91033,乌克兰9号植物生理学系,斯洛伐克农业大学,尼特拉大学94976,斯洛伐克,斯洛伐克10,斯洛伐克10对于药用植物研究“ JosifPanči树博士”,TadeušakošćUškaKa Ka 1,11000 Belgrade,塞尔维亚12,塞尔维亚12,葡萄牙波尔图市波尔图市波尔图市的医学院13,葡萄牙研究所健康研究所健康研究所(I3S),研究所,葡萄牙,研究所,葡萄酒,研究所,研究和高级培训,研究和培训技术,研究了Rua and Science and Inlies of Sci and Iragience and Iragience and Cii and Rure in Ci ci and Irria and Rure of Rure,Rua and Rure of Rure,Rua,Rua,Rua,Rua and Irlua and Irria and Irria and Rure in Ci) Gandra,1317,4585- 116 Gandra,Prd,Prd,葡萄牙15董事长兼制药系,Jagiellonian大学,医学院,Medyczna,Medyczna 9,30-688Kraków,波兰16 H.E.J.
背景:神经胶质瘤是最常见的原发性恶性脑肿瘤,具有可怕的总体生存和高死亡率。临床治疗中最困难的挑战之一是,大多数药物几乎不会穿过血脑屏障(BBB)并在肿瘤部位实现有效的积累。因此,为了避免这一障碍,开发有效穿越BBB药物递送纳米壳的临床重要性非常重要。狂犬病病毒糖蛋白(RVG)是一种衍生肽,可以特异性结合与烟碱乙酰胆碱受体(NACHR)在BBB和胶质瘤细胞上广泛表达,以使狂犬病病毒入侵大脑。受到这一点的启发,RVG已被证明可以增强整个BBB的药物,促进渗透性,并进一步增强药物肿瘤的选择性和穿透性。方法:在这里,我们使用了从众所周知的RVG29进行重新分组的RVG15,以开发针对脑靶向的脂质体(RVG15-LIPO),以增强BBB的透气性和paclitaxel(PTX)的肿瘤特异性递送。制备紫杉醇 - 胆固醇复合物(PTX-CHO),然后积极地加载到脂质体中以获得高夹层效率(EE)和良好的稳定性。同时,对物理化学特性,体外和体内递送效率和治疗效应进行了彻底研究。结果:PTX-CHO-RVG15-LIPO的粒径和ZETA电位分别为128.15±1.63 nm和-15.55±0.78 mV。与游离PTX相比,PTX-CHO-RVG15-LIPO在HBMEC和C6细胞中表现出极好的靶向效率和安全性,并且在BBB的体外模型中的运输效率更好。此外,PTX-CHO-RVG15-LIPO可以明显改善PTX在大脑中的积累,然后根据基于体内成像分析的C6 Luc Orthotopic Glioma中的化学治疗药物渗透。体内抗肿瘤结果表明,PTX-CHO-RVG15-LIPO显着抑制了神经胶质瘤的生长和Metabasis,因此提高了具有不利影响的肿瘤小鼠的存活率。结论:我们的研究表明,由于BBB渗透和肿瘤靶向能力,RVG15是一种有前途的脑靶向特定配体。基于体外和体内出色的治疗效果,PTX-CHO-RVG15-LIPO被证明是PTX治疗临床上神经胶质瘤的潜在输送系统。关键字:神经胶质瘤,血液 - 脑屏障,RVG15,脂质体,紫杉醇
摘要。目的:介绍一个无法切除的胃癌患者的病例,该患者用Ramucirumab以及紫杉醇和转化手术的二线药物治疗产生了显着影响。病例报告:一名68岁的妇女被诊断出患有胃癌。食管胃十二指肠镜检查显示出溃疡性病变,在胃的下三分之一中有不规则的结节边界,活检标本的组织学表明腺癌分化差。增强的计算机断层扫描显示肝脏的大量侵袭,并使用S-1加奥沙利铂作为一线化学疗法对患者进行治疗。由于她发展了肝转移,因此将治疗方案更改为Ramucirumab加上紫杉醇作为二线治疗。在每周进行紫杉醇治疗的每周紫杉醇周期后,肝转移完全消失。由于未检测到其他器官中的其他转移性病变,因此我们对D2淋巴结清扫术进行了全胃切除术。手术切除的样品的宏观发现显示出溃疡性病变,其不规则调节病变的测量为9.5×4.5 cm。病理分析表明,胃中分化的腺癌分化较差,通过浆膜层侵入肝脏和七个淋巴结转移。术后课程不明显,她在