项目详细信息:动机:中红外(miR)光谱是一种强大的工具,可通过其独特的振动吸收特征(波长〜2-14 µm)来识别生化物质 - 在革命性技术中扮演至关重要的作用,使生物医学诊断,远程诊断和环境监视。不幸的是,miR光谱传感/成像被认为是繁琐的,昂贵的,通常是在实验室中固定的。对缩小传统光谱系统的技术挑战仍然存在 - 从光源,传感机制(由于相互作用弱)到检测子系统。metasurfaces为下一代多功能miR传感技术提供了令人兴奋的途径。元面是3D超材料的2D等效物:人工设计的材料,其特性在自然界中不可能找到。光子跨国使用子波结构(元原子)阵列内的纳米级光 - 含量相互作用来操纵电磁波。但是,光子学中的常规前向设计过程导致最终的设备功能和性能不足,没有明显的方法进行。AI驱动的逆设计方法提供了光子结构设计的新范式,以克服传统方法。项目:这个跨学科的博士学位项目将使用逆设计方法开发多功能光子跨度,用于非常规MIR光谱传感和高光谱成像技术。该博士学位的目标是开发了下一代mir技术的家族。C. Williams博士(PI),位于CMRI中,我们将调查(1)热发射微型源,这些微型源操纵热发射,超出了经典的各向同性,宽带和非偏振黑体发射; (2)增强与靶分子相关的分子振动吸收模式(包括葡萄糖,与工业伴侣结合); (3)用于超敏感传感的光驱动光热传感器。技能开发:研究跨越基本的光学物理学到应用程序,学生将在博士项目期间开发多样化且备受追捧的技能,包括:使用AI /机器学习方法,电磁模拟的计算光学器件(包括Lumerical FDTD和comsol),最先进的洁净室内的纳米制作(包括电子束光刻,物理蒸气沉积和两光子聚合3D打印),电形系统表征,感应性能的验证和高级数据分析。埃克塞特大学:埃克塞特物理学系在光学物理,光子设备开发和超材料方面具有广泛的专业知识。学生将拥有世界一流的研究设施,并基于超材料研究与创新中心(CMRI):一个学术,工业和政府合作伙伴的社区,可利用从理论到应用的世界领先的研究卓越研究,并启用模拟,测量和基于基于Metamagatials和Metamagematialial的设备。
在Terahertz(THZ)频率范围内产生单色电磁辐射,数十年来一直是一项艰巨的任务。在此,证明了介电材料KY(MOO 4)2中光音子单色子THZ辐射的发射。ky的分层晶体结构(MOO 4)2导致红外剪切晶格振动的能量低于3.7 MeV,对应于低于900 GHz的频率,而基于固体的单色辐射源很少见。直接通过5 ps长宽带Thz脉冲激发,ky中的红外活性光学振动(MOO 4)2重新发射窄带子Thz辐射作为数十无picseconds的时变偶极子,对于振荡器而言,频率低于1 THz,这对于振荡器而言异常长。如此长的连贯发射允许检测超过50个辐射的辐射,频率为568和860 GHz。与使用材料的化学稳定性相同的较长衰减时间表明,THZ技术中的各种可能应用。
微塑性污染已成为全球重要的环境问题,影响了海洋,陆地和大气生态系统。随着微塑性污染继续加剧,需要精确,有效和可扩展的检测方法的需求正在增长。本评论重点介绍了微型检测技术的最新进展,特别关注激光直接红外(LDIR)光谱法。利用量子级联激光器(QCL),LDIR具有快速,敏感和自动检测功能。与诸如傅立叶变换红外(FTIR)和拉曼光谱技术等传统技术相比,它大大减少了分析时间,使其非常适合大规模的环境监测。其识别小至10μm的颗粒的能力,结合了增强的波长精度,将LDIR定位为跨各种环境矩阵的微型分析的有前途的工具。尽管有一些局限性,例如较窄的光谱范围,但LDIR的较高速度和精确度使其成为理解和解决全球微型塑料危机的关键进步。
背景:注意缺陷多动障碍(ADHD)是一种流行的神经发育障碍,其特征是不注意,冲动和多动症。随着神经调节技术的持续发展,重复的经颅磁刺激(RTMS)已成为ADHD的潜在非侵入性治疗。但是,缺乏对ADHD的RTM机理的研究。功能性附近红外光谱(FNIRS)是一种光学成像技术,它通过测量脑组织中血氧浓度的变化来反映脑功能。因此,这项研究利用FNIR来检查RTMS对ADHD儿童的核心症状和前额叶皮层激活的影响,这为RTMS在ADHD治疗中的临床应用提供了参考。
本文是对生命评论物理学的第一个20年中发表的最引用的文章之一的后续行动。特定的主题是“蚂蚁菌落优化”,它是解决挑战性优化问题的元疗法。由于自然蚂蚁菌落最短的路径发现行为的灵感,该优化技术构成了一个被称为群智能的较大领域的一部分。在对蚂蚁菌落优化的简短介绍之后,我们首先提供了针对算法发展而不是应用的年代。本文的主要部分介绍了对蚂蚁菌落优化文献的书目计量研究。关于有关出版物的地理起源以及随着时间的推移的研究重点的有趣趋势,可以从提出的图形和数字中学到。
瑞创科技旗下瑞创微电子有限公司是全球对红外热传感技术理解最为全面的企业,拥有数十年热传感器及摄像头模组自主研发和制造经验,与全球客户及合作伙伴共同为世界提供更美好的未来和生活。
摘要:由于成本效益和易于操作,室温长波红外(LWIR)检测器比低温溶液优先。当前未冷却的LWIR探测器(例如微量体计)的性能受到降低的灵敏度,缓慢的响应时间和缺乏动态光谱可调性的限制。在这里,我们提出了一个基于石墨烯的有效室温LWIR检测器,利用其可调的光学和电子特性,具有高检测性和快速响应时间。固有的弱光吸收可以通过与光腔耦合的图案化石墨烯上的狄拉克等等离子增强。通过不对称载体生成环境,通过Seebeck效应将吸收的能量转化为光伏。此外,通过静电门控实现8-12μmLWIR带中的动态光谱可调性。拟议的检测平台铺平了新一代未冷却的基于石墨烯的LWIR光电探测器,用于诸如分子传感,医学诊断,军事,安全和空间之类的广泛应用。关键字:红外探测器,石墨烯,二维材料,狄拉克等离子,光热效应
无监督的可见红外人员重新识别(USL-VI-REID)旨在匹配来自不同方式的同一身份的行人图像,而无需注释。现有作品主要集中于通过对齐未标记的样本的实例级特征来减轻模式差距。但是,跨模式簇之间的关系尚未得到很好的探索。为此,我们提出了一个新型的双边群集匹配的学习框架,以通过匹配的跨模式簇来弥补模态差距。特定的是,我们通过优化两部分图中的最大匹配问题来设计多到多的双边跨模式群匹配(MBCCM)算法。然后,匹配的成对簇在模型训练过程中利用共享的可见和红外伪标签。在这样的监督信号下,提出了一种特异性和模态性和情态的(MSMA)对比度学习框架 - 提议在集群级别上共同对齐特征。平均值,提出了交叉模式一致性约束(CC),以明确减少较大的模态差异。对公共SYSU-MM01和REGDB数据集进行了广泛的实验,证明了该方法的有效性,平均超过8.76%的地图超过了最先进的方法。
低水平激光疗法(LLLT),也称为光生调节,是使用红色梁或近红外激光器,波长在600至1000 nm之间,功率在5到500 mW之间。相比之下,用于手术的激光通常使用300W。当应用于皮肤时,LLLT不会产生任何感觉,也不会燃烧皮肤。由于人皮肤的吸收率低,因此假设激光可以深入渗透到具有光生物刺激作用的组织中。其对组织愈合作用的确切机制尚不清楚。假设包括改进的细胞修复和免疫,淋巴和血管系统的刺激。lllt以治疗多种疾病,包括软组织损伤,肌筋膜疼痛,肌腱病,神经损伤,关节疼痛和淋巴水肿。