理解复杂的神经回路及其与特定行为的关系需要对神经元亚型进行精确的时间和空间调节。非遗传近红外光刺激是最有前途的大脑非侵入性神经接口技术之一。1-5 最近,脉冲红外神经刺激 (INS) 技术已被引入作为一种能够安全且可逆地调节神经活动的方法。1 与其他波长的红外刺激(例如 808 nm、2 980 nm、3 5.6 μ m 4、5 )引起的效应相反,脉冲传输 ∼ 1.875 μ m 红外波长会导致局部热量传输并被水快速吸收。6 当通过 200 μ m 光纤以短脉冲串(0.25 ms、200 Hz、0.5 s)传输时,这种高度聚焦(亚毫米)光学方法为灵长类动物皮层中的功能性柱特异性刺激提供了一种独特的方法。 7 因此,INS 相较于传统电刺激的优势包括高空间选择性、非接触式传递,以及对于灵长类动物和人类应用而言更为重要的一点,即无需事先表达视蛋白即可对大脑部位进行神经调节。8、9 此外,凭借这种靶向光纤刺激的精确度和 MRI 兼容性,局部 INS 结合 MRI 可用于灵长类动物大脑网络的体内映射 10-12,并有望用于对清醒行为猴子进行神经调节。虽然这些应用已显示出对体内回路神经调节的巨大前景,但其作用机制或对单个细胞类型的影响目前仍然知之甚少。现在有越来越多的证据表明 INS 会导致神经调节。通过电生理学、内在信号光学成像和体内钙成像评估,INS 已被证明可在麻醉啮齿动物中诱导兴奋性和抑制性神经元反应。 13、14 INS 对麻醉恒河猴视觉皮层产生了典型的视觉诱导皮层内在信号 7 的反应,而且导致功能匹配的眼部优势域的选择性调节,与局部皮层-皮层连接的激活一致。超高场 MRI 中的 INS 可激活恒河猴解剖学预测的中尺度全球大脑部位,这进一步表明投射细胞(兴奋性锥体神经元)被 INS 激活。10 – 12 这些 INS 诱导的反应已被证明具有强度和持续时间依赖性。尽管有这些令人信服的证据,但直接用电生理学方法展示神经元反应仍然具有挑战性。一个被称为贝克勒尔效应的问题在于,记录电极的直接加热会通过电极中的热诱导电流污染神经元反应。Cayce 等人。使用同时在麻醉啮齿动物体内使用 INS 进行钙成像,并观察大脑表面皮质星形胶质细胞和顶端树突中的细胞内钙信号。14 Kaszas 等人使用遗传编码的钙指示剂 Syn-GCaMP6f 进行双光子钙成像,并表明 INS 在麻醉小鼠皮质体内的神经元中诱导微弱的细胞内钙信号。15 到目前为止,我们对神经元反应的理解仍然处于初级阶段。其潜在的作用机制尚不清楚 16 – 23,并且在细胞水平上对不同神经元亚型以及体内不同生理状态的反应的影响仍然缺乏。特别是,尽管 fMRI 研究表明 INS 可在远处皮质部位诱导 BOLD 激活,但对于细胞回路对这种功能连接结果的贡献知之甚少。为了研究 INS 如何影响体内单个神经元并检查对不同细胞亚型的影响,我们在小鼠体感皮层 2/3 层以单细胞分辨率对 INS 的神经元钙反应进行了双光子成像。使用特定的遗传编码钙指示剂 GCaMP6 检查了 hSyn 和 mDlx 标记的神经元亚型的钙反应。我们发现 INS 诱导了神经元钙反射变化的强烈、强度依赖性调节,这种调节与脉冲序列重复频率精确同步。在麻醉小鼠中,hSyn 神经元对 INS 表现出正偏转反应。令人惊讶的是,mDlx 神经元群体包含不同的反应,其中一些表现出负向反应,可能反映了抑制神经元群体的多样性。因此,这些数据确定了 INS 对 hSyn 和 mDlx 神经元的有效性以及对细胞亚型的可能依赖性。讨论了这一发现的意义。使用特定的遗传编码钙指示剂 GCaMP6s 检查了 hSyn 和 mDlx 标记的神经元亚型的钙反应。我们发现 INS 诱导了神经元钙反射变化的强烈、强度依赖性调节,这种调节与脉冲序列重复频率精确同步。在麻醉小鼠中,hSyn 神经元对 INS 表现出正偏转反应。令人惊讶的是,mDlx 神经元群体包含不同的反应,其中一些表现出负向反应,可能反映了抑制神经元群体的多样性。因此,这些数据确定了 INS 对 hSyn 和 mDlx 神经元的有效性以及对细胞亚型的可能依赖性。讨论了这一发现的含义。使用特定的遗传编码钙指示剂 GCaMP6s 检查了 hSyn 和 mDlx 标记的神经元亚型的钙反应。我们发现 INS 诱导了神经元钙反射变化的强烈、强度依赖性调节,这种调节与脉冲序列重复频率精确同步。在麻醉小鼠中,hSyn 神经元对 INS 表现出正偏转反应。令人惊讶的是,mDlx 神经元群体包含不同的反应,其中一些表现出负向反应,可能反映了抑制神经元群体的多样性。因此,这些数据确定了 INS 对 hSyn 和 mDlx 神经元的有效性以及对细胞亚型的可能依赖性。讨论了这一发现的含义。
红外图像中的多级对象检测对于军事和平民使用很重要。深度学习方法可以获得高精度,但需要大规模数据集。我们提出了一个生成数据增强框架文档,用于使用有限数据的红外多级对象检测。本文的贡献是四倍。首先,Doci-Gan被设计为有条件的图像介绍框架,得出配对的红外多级对象图像和注释。其次,为文本到图像转换器配制了将文本格式对象注释转换为边界框掩码映像,从而导致增强是掩盖图像 - 图像 - 绘制图像图像翻译。第三,产生了基于多形态侵蚀的损失,以减轻对本地背景和全球背景的涂料不一致的不一致性。最后,为了生成各种图像,人工多级对象注释在增强过程中与真实的对象注释集成在一起。实验结果表明,具有高质量红外多级对象图像的文档增强数据集,从而提高了对象检测基准的准确性。
二甲双胍的重点是高度安全性,低副作用和各种作用,除了降低血糖,例如抗炎,抗肿瘤和抗衰老。研究表明,二甲双胍对肠道菌群的组成和功能具有调节作用,而不是作用于肝脏。但是,菌群的组成很复杂,并且在物种和个体之间有所不同,每项研究的实验设计也不同。多个因素是更好地理解二甲双胍对肠道菌群的影响的主要障碍。本文回顾了二甲双胍对肠道菌群的调节作用,例如增加了akkermansia属的丰度,丰富了产生细菌属的短链脂肪酸(SCFA),并调节某些属的基因表达。肠道微生物群是人体中的大型生态系统,被认为是人体的“器官”,这与人类健康和疾病状况高度相关。有很多证据表明肠道菌群是造成二甲双胍广泛影响的原因。但是,关于这种机制的系统研究只有少数系统的研究,而具体机制仍不清楚。本文旨在总结二甲双胍与肠道菌群有关的可能机制。
1.1 Electromagnetic Spectrum and Atmospheric Transmission 2 1.2 Blackbody Radiation 4 1.3 A Day in the Life of a Photon 7 1.4 Refraction and Refractive Index 10 1.4.1 Birefringence 15 1.4.2 Preference for cubic materials 18 1.5 Reflection and Transmission 20 1.5.1 Transmission of an absorbing window 22 1.5.2 Etalon effect 23 1.6 Optical Constants n and k 26 1.7 Behavior of Absorption Coefficient and Refractive Index 28 1.8 Transmission Spectra of Infrared Materials 30 1.9 Measuring the Absorption Coefficient 43 1.9.1 Direct transmittance measurements 43 1.9.2 Laser calorimetry 46 1.9.3 Photothermal common-path interferometry 49 1.10 Emittance 53 1.10.1 Absorption coefficients of sapphire, spinel, and ALON near their 5 m m absorption cutoff 58 1.11 Effect在吸收和发射时的温度58 1.12半导体中的游离载体吸收60 1.13是什么使窗户中部或长波成为什么?67 1.14“两色”材料76 1.15杂质中的红外窗户吸收特征78 1.15.1热榨氟化镁78 1.15.2 OH在多晶氧化物中79 1.15.1 1.15.3标准奖励蒸气剂量固定Zns 80 1.15.4 Co 2 co 2 co 2 ex co 2 ex co prapped ore proper ot ex ex ex <多cer ex ex <多cer <
20 世纪早期之前,物理学语言建立了一个框架,理论上,所有现象对于近距离观察者来说都是可量化和可预测的。然而,随着量子力学的发现,这种确定性的世界观发生了根本性的改变,量子力学提出了真正的随机性和不可预测性。在过去的一个世纪里,许多突破性的实验都证明了这一基本定律,这些实验主要以光(量子)为中心。如今,人们越来越关注单光子的实际应用。在本论文中,我们研究了单光子的起源,并使用非线性光学过程设计了实验。深入研究细节,我们使用长度为 10、20 和 30 毫米的 ppKTP 晶体对二次谐波的产生进行了研究,并比较了结果,指出效率和温度带宽随长度变化的趋势相反。此外,我们还利用 BBO 晶体探索了下转换光子的数值和实验空间特性。还添加了一些结果来解释从相关光子对获得纠缠的过程。
摘要:脑机接口 (BCI) 系统包括信号采集、预处理、特征提取、分类和应用阶段。在 fNIRS-BCI 系统中,深度学习 (DL) 算法在提高准确性方面起着至关重要的作用。与传统的机器学习 (ML) 分类器不同,DL 算法无需手动提取特征。DL 神经网络会自动提取数据集中的隐藏模式/特征来对数据进行分类。在本研究中,从 20 名健康参与者那里获取了手握(闭合和张开)两类运动活动数据集,并将集成上下文门网络 (ICGN) 算法(提出)应用于该数据集以提高分类准确性。所提出的算法从过滤后的数据中提取特征,并根据网络中先前单元的信息生成模式。因此,基于数据集内生成的类似模式进行分类。将所提出的算法的准确性与长短期记忆 (LSTM) 和双向长短期记忆 (Bi-LSTM) 进行了比较。所提出的 ICGN 算法的分类准确率为 91.23 ± 1.60%,显著(p < 0.025)高于 LSTM 和 Bi-LSTM 分别实现的 84.89 ± 3.91 和 88.82 ± 1.96。使用 30 名受试者的开放访问三类(右手和左手手指敲击和优势脚敲击)数据集来验证所提出的算法。结果表明,ICGN 可有效用于基于 fNIRS 的 BCI 应用中二类和三类问题的分类。
目前,溶酶体被描述为高级细胞器,在细胞稳态中起着关键作用,并介导了各种生理过程,例如蛋白质降解和质膜修复。1,2个证据表明,溶酶体中水解酶的异常活性与疾病的发病机理,例如储存障碍,癌症,神经退行性疾病和心脏疾病。3 - 5,其中lyso- somes中的b-乳糖苷酶(b -gal)参与了糖结合物的分解代谢,其异常水平与原发性卵巢癌的发生和进展有关,使溶酶体的糖尿病癌症成为可靠的诊断和诊断的动力学诊断。6 - 10对实时途径中溶酶体中水解酶的现场监测将为溶酶体酶在疾病进展中的详细作用提供见解,并进一步有助于早期诊断和治疗策略的发展。11 - 13
摘要中红外的光学频率梳是一种强大的气体传感工具。在这项研究中,我们证明了一个简单的中红外双弯曲光谱仪,在Linbo 3波导中覆盖3–4 µm。基于低功率激光器系统,通过linbo 3波导中的脉冲差差频率产生来实现中红外梳子。我们在超脑生成之前构建疗法前的管理,以控制泵和信号脉冲的时空比对。对于3-4 µm idler的产生,超副局部直接耦合到the的定期螺旋的Linbo 3波导中。基于这种方法的中红外双弯曲光谱仪在25 THz覆盖范围内提供了100 MHz的分辨率。为了评估光谱法的适用性,我们使用双梳光谱仪测量甲烷光谱。测量结果与Hitran数据库一致,其中残留的根平方为3.2%。这种提出的方法有望在芯片上开发综合且坚固的中红外双弯曲光谱仪进行感测。
通过时间分辨的吸收和荧光光谱研究,研究了荧光日二烯(FDAE)衍生物的荧光二乙烯(FDAE)衍生物的激发态动力学的抽象近红外两光子吸收和激发态动力学。用量子化学计算进行预筛选预测,封闭环异构体中用甲基噻酯基(MT-FDAE)的衍生物具有两光子的吸收横截面 - 大于1000 GM,这是通过Z-SCAN的测量和激发功率依赖于瞬时吸收的实验证实的。比较在一光子和同时的两光子激发条件下瞬时吸收光谱的比较表明,在CA的时间表上,在三个途径上停用了较高激发态的MT-FDAE的闭合环异构体。200 fs:(i)比单光过程,(ii)内部转换到s 1状态的环反应反应的效率更高,(iii)放松到与s 1状态不同的较低状态(s 1'状态)。时间分辨的荧光测量结果表明,该S 1'状态被放松到S 1状态,具有较大的排放概率。在本工作中获得的这些发现有助于以两光子的方式扩展FDAE到生物学窗口的开关切换能力,并应用于超分辨率荧光成像。
可生物降解的纳米材料可以显着改善纳米医学的安全性。锗纳米颗粒(GE NP)是作为生物医学应用的有效光热转化器而开发的。ge NP由飞秒激光在液体中合成的液体通过氧化机制迅速溶解在生理样环境中。GE纳米颗粒的生物降解在体外和正常组织中保存在半衰期短达3.5天的小鼠中。GE NP的生物相容性通过血液学,生化和组织学分析在体内确定。在近红外光谱范围内GE的强烈光吸收可在静脉注射GE NP后对体内植入的肿瘤进行光热治疗。光热疗法导致EMT6/P腺癌肿瘤生长的3.9倍降低,而小鼠的存活显着延长。在纳米材料的静脉内和肿瘤内施用后,GE NP(808 nm处的7.9 L G - 1 cm-1)的出色质量渗透使骨骼和肿瘤具有光声成像。因此,强烈吸收近红外的生物降解纳米材料对晚期治疗学有希望。