川崎病(KD)是一种全身性血管炎,影响了5岁以下的儿童。生命的早期以躯体增殖和免疫不成熟为特征,并具有主导的先天免疫系统。KD中冠状动脉并发症是儿童最常见的心脏病,但KD的诊断仍然取决于临床诊断标准。 光滑的红色嘴唇和结膜注射是使儿科医生能够对KD进行初始诊断的特征征兆;但是,几乎不知道为什么这些是如此的特征。 KD的诊断标准似乎散布在看似无关紧要的身体系统中,例如眼睛,嘴唇,皮肤和心脏。 KD被归类为结缔组织疾病。 最近,红细胞(RBC)已成为先天免疫反应中的重要调节剂。 据报道, RBC参与皮肤成纤维细胞中的细胞外基质重塑和上调基质金属蛋白酶(MMP)的表达。 此外,与纤维化相关的成纤维细胞生长因子和microRNA在KD中引起了人们的注意。 KD的基本符号出现在粘液粉交界处的边界。 头颈部区域在经历上皮到间质转变(EMT)的组织中很丰富。 间质性心脏炎和瓣膜功能不全以及冠状动脉病变可能使KD复杂化,并且这些病变存在于EMT源自心外膜祖细胞的组织中。 kd几乎没有在躯体生长和免疫成熟的成年人中呈现。冠状动脉并发症是儿童最常见的心脏病,但KD的诊断仍然取决于临床诊断标准。光滑的红色嘴唇和结膜注射是使儿科医生能够对KD进行初始诊断的特征征兆;但是,几乎不知道为什么这些是如此的特征。KD的诊断标准似乎散布在看似无关紧要的身体系统中,例如眼睛,嘴唇,皮肤和心脏。KD被归类为结缔组织疾病。最近,红细胞(RBC)已成为先天免疫反应中的重要调节剂。RBC参与皮肤成纤维细胞中的细胞外基质重塑和上调基质金属蛋白酶(MMP)的表达。此外,与纤维化相关的成纤维细胞生长因子和microRNA在KD中引起了人们的注意。KD的基本符号出现在粘液粉交界处的边界。头颈部区域在经历上皮到间质转变(EMT)的组织中很丰富。间质性心脏炎和瓣膜功能不全以及冠状动脉病变可能使KD复杂化,并且这些病变存在于EMT源自心外膜祖细胞的组织中。kd几乎没有在躯体生长和免疫成熟的成年人中呈现。回顾了有关KD的最新研究,我们认为KD的迹象存在着角质化和非角化分层的分层鳞状上皮之间的边界,在这种情况下,EMT仍在进行快速的体细胞增长中,其中RBC招募了RBC作为先天性免疫反应,并预防Mucosa中过度纤维化的纤维化。在这篇综述中,我们试图解释KD临床表现的原因,并在KD儿童的体细胞增长和免疫系统成熟期间在EMT的角度寻找诊断线索之间的联系。
摘要红细胞侵袭阶段在恶性疟原虫中在繁殖,性测定和耐药性中起着关键作用。为了确定红细胞侵袭阶段中的关键基因和途径,使用了W2MEF菌株的基因集(GSE129949)和RNA-SEQ计数数据进行进一步分析。进行了一项综合生物启动研究研究,以审查基因作为潜在的药物靶标。487差异表达的基因(DEG)具有调整后的P值<0.001富含47个基因本体论(GO)项,这些术语基于超几何分析P值<0.01。蛋白质 - 蛋白质相互作用网络分析是使用具有较高置信度相互作用的DEG进行的(PPI评分阈值= 0.7)。MCODE和CYTOHUBBA应用程序用于定义轮毂蛋白,并根据多个拓扑分析和MCODE分数对它们进行排名。此外,通过使用MPMP数据库中的322个基因集进行基因集富集分析(GSEA)。通过领先分析确定了多个重要基因集中涉及的基因。我们的研究确定了编码蛋白质的六个基因,这些基因可能是与蛋白质侵袭阶段有关的潜在药物靶标,与MerozoITE的运动性,细胞周期调节,G依赖性蛋白激酶磷酸化,微蛋白蛋白的控制,微管组装的控制和性承诺有关。根据DCI(药物置信度指数)和预测结合口袋的值计算这些蛋白质的可药物性。表现出最好的结合袋值的蛋白质受到深度学习的虚拟筛选。该研究以抑制剂鉴定的蛋白质的药物结合评分来确定最佳的小分子抑制剂。
1 哈佛大学遗传学系,马萨诸塞州波士顿,2 哈佛医学院波士顿儿童医院血液学/肿瘤学分部,马萨诸塞州波士顿,3 哈佛医学院丹娜法伯癌症研究所儿科肿瘤学系,马萨诸塞州波士顿,4 麻省理工学院和哈佛大学布罗德研究所,马萨诸塞州剑桥,5 米兰大学临床科学与社区系,IRCCS Ca'Granda Foundation Maggiore Policlinico 医院,意大利米兰,6 牛津大学 MRC Weatherall 分子医学研究所,英国牛津,7 牛津大学 MRC Weatherall 分子医学研究所 MRC 分子血液学部,英国牛津,8 牛津大学医院 NHS 基金会信托牛津遗传学实验室,英国牛津,9 NIHR 牛津生物医学研究中心和 BRC/NHS 转化分子诊断中心,约翰拉德克利夫医院,英国牛津,10 牛津大学医院 NHS 基金会血液学系Trust,牛津,英国 # 通讯作者 摘要 启动子近端暂停的 RNA 聚合酶 II (Pol II) 的控制释放进入生产性延长是基因调控的重要步骤。然而,对 Pol II 暂停进行功能分析很困难,因为调节暂停释放的因素几乎都是必需的。在这项研究中,我们在与 HBB 突变无关的 β-地中海贫血患者中发现了 SUPT5H(编码 SPT5)的杂合功能丧失突变。在健康人类细胞的红细胞生成过程中,细胞周期基因在从祖细胞到前体的转变中高度暂停。当通过 SUPT5H 编辑重现致病突变时,Pol II 暂停释放被全面打乱,从祖细胞到前体的转变被延迟,其特点是红细胞特异性基因表达和细胞周期动力学出现短暂滞后。尽管存在这种延迟,细胞仍会终末分化,细胞周期相分布也会恢复正常。因此,阻碍暂停释放会扰乱红细胞生成过程中关键转变处的增殖和分化动力学,揭示了 Pol II 暂停在细胞周期和分化之间的时间协调中的作用。 简介 细胞分化是一个严格调控的多步骤过程,需要细胞类型特异性基因表达程序中的几种转变。因此,转录的精确调控是控制基因表达的关键步骤,是细胞分化的基础 (Young 2011; Lee and Young 2013; Jonkers and Lis 2015)。RNA 聚合酶 II (Pol II) 暂停
和流式细胞仪用于通过RWA 264.7细胞研究H40-PEG NP和ASP8 [H40-PEG@(RBC-H)] NP的摄取来评估这种能力。如图1 K,与H40-PEG加载的FITC NPS组相比,CLSM检测到的ASP8 [H40-FITC@(RBC-H)] NP的荧光强度显着弱。此外,与H40-PEG负载FITC NP相比,如流式细胞仪所示,ASP8 [H40-FITC@(RBC-H)] NPS组的相对荧光强度降低了约10%(图。1 L),与CLSM分析的结果一致(附加文件1:图S3)。这些发现表明,含有一些特殊的膜蛋白(例如CD47)的RBC-H杂种膜将H40-PEG NP赋予具有免疫逃生能力的H40-PEG NP,以避免巨噬细胞吞噬作用。因此,ASP8 [H40-FITC@(RBC-H)] NP可以避免体内巨噬细胞吞噬作用。
预印本(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。该版本的版权持有人于2021年9月11日发布。 https://doi.org/10.1101/2021.09.10.459878 doi:Biorxiv Preprint
Karayel 等人报告了他们基于质谱 (MS) 的蛋白质组学分析结果,该分析针对处于不同成熟阶段的人类培养 CD34+ 衍生红细胞。他们观察到蛋白质组的动态变化。他们采用 CRISPR/Cas9 筛选靶向 HUDEP2 培养系红细胞成熟过程中的激酶,发现靶向 c-Kit/MAPK 信号传导可促进终末红细胞成熟。作者做了大量工作,功能方法合理。揭示人类红细胞成熟过程中的蛋白质组动态变化是主要关注点。 MAPK 是一种已知的红细胞增殖调节剂,可阻止小鼠和人类红细胞的成熟(相关文献包括 PMID:15705783;17317860;PMID:15166036;PMID:12969966;PMID:31413092;PMID:15030167)。作者应引用这些文献,并阐明他们在红细胞成熟过程中发现 MAPK 的新颖性,或在已知背景下讨论其工作的确认性方面。此外,如果作者能够在 MAPK 信号蛋白敲除小鼠模型的红细胞生成背景下讨论他们的研究结果,那将是有益的。同样,作者应该参考由红细胞生成素受体信号诱导的 PIM1 激酶的研究(PMID:28732065,PMID:20639905),并在该背景下讨论他们的工作。作者鉴定出在红细胞成熟过程中表达的大量 SLC(溶质载体)转运蛋白。这是一个有趣的发现,证实了之前的转录组分析(也应该参考)。如果作者提供有关人类红细胞中 SLC 的功能信息,那将很有趣。
结果 调整潜在混杂因素后,RBC LCn3PUFA 水平较高的参与者的白质和海马体积明显较大。omega-3 指数每增加四分位距 (2.02%),白质平均体积就会增加 5.03 cm3 (p < 0.01),海马平均体积就会增加 0.08 cm3 (p = 0.03)。与 RBC 二十二碳六烯酸和二十碳五烯酸水平的关联相似。较高的 LCn3PUFA 减弱了 PM 2.5 暴露与整个大脑和多模态关联区域(额叶、顶叶和颞叶;交互作用的所有 p 值 < 0.05)白质体积之间的负关联,而与其他大脑区域的关联没有改变。在 LCn3PUFA 和非油炸鱼的饮食摄入量方面发现了一致的结果。
1 宾夕法尼亚大学佩雷尔曼医学院系统药理学和转化治疗学系;美国宾夕法尼亚州费城 19104;carlos.h.villa@outlook.com(CHV);jacob.brenner@pennmedicine.upenn.edu(JSB) 2 哈佛大学约翰·A·保尔森工程与应用科学学院,美国马萨诸塞州剑桥 02138;anvay_ukidve@g.harvard.edu(AU);zmzhao@g.harvard.edu(ZZ);mitragotri@seas.harvard.edu(SM) 3 哈佛大学维斯生物启发工程研究所,美国马萨诸塞州剑桥 02138 4 卡内基梅隆大学颠覆性健康技术研究所,美国宾夕法尼亚州匹兹堡 15213;pnsmith@andrew.cmu.edu(PS); alanrussell@cmu.edu (AJR) 5 卡内基梅隆大学生物医学工程系,美国宾夕法尼亚州匹兹堡 15213 6 卡内基梅隆大学生物科学系,美国宾夕法尼亚州匹兹堡 15213 7 卡内基梅隆大学化学工程系,美国宾夕法尼亚州匹兹堡 15213 8 宾夕法尼亚大学佩雷尔曼医学院医学系、肺、过敏和重症监护医学科,美国宾夕法尼亚州费城 19104 * 通讯地址:pglas@pennmedicine.upenn.edu (PMG);muzykant@pennmedicine.upenn.edu (VRM);电话:+ 1-215-898-9823 (VRM)