2.如果 N 的值为 1 或小于 1,则可以安全地提供 1 级单元,介质寿命约为。12 个月。如果 N 的值为 1.5 并且仍然提供 1 级单元,则介质寿命缩短为 8 个月 - 12 / 1.5 = 8 个月 3.如果为第二个/下一个污染物选择的 EcoScrub 介质与为第一个污染物选择的介质不同,则将选择 2 级单元,并针对每个介质分别计算介质寿命,如上所述。4.如果为两种或多种污染物选择的 EcoScrub 介质相同,则可以将针对单个污染物计算出的床数相加,以进行介质的组合选择。5.ECO-SCRUB 装置的级数不应超过 3(三)。但是,如果级数超过 3,则可以使用非标准装置选项。(最多 4(四)级)。如果发生这种情况,请咨询工程师。BRY-AIR (ASIA) PVT LTD 部门以获取指导。选择“薄床”ECO-SCRUB 的步骤基于单一吸附剂的应用 a.如果根据上述选择程序计算出的级数小于 0.25,请选择相应的 Eco-Scrub 薄床 1 级模型。b.如果根据上述选择程序得出的级数大于 0.25 但小于 0.5,则选择相应的 Eco-Scrub 薄床 2 级模型。c. 如果根据上述选择程序得出的级数大于 0.5 但小于 0.75,则选择相应的 Eco-Scrub 薄床 3 级模型。基于两种/多种吸附剂的应用 a.如果根据上述选择程序得出的每种吸附剂的级数小于 0.25,则根据所选吸附剂的数量选择相应的 Eco-Scrub 薄床 2 级或 3 级模型。b.如果根据上述选择程序选定的每种吸附剂的级数,对于一种吸附剂,计算结果小于 0.25,而对于第二种吸附剂,计算结果大于 0.25 但小于 0.5,则选择 Eco-Scrub 的薄床 3 级模型,其中该装置的一个床装有前一种吸附剂,其余两个床装有后一种吸附剂。
第一单元 傅里叶级数:傅里叶级数简介、不连续函数的傅里叶级数、偶函数和奇函数的傅里叶级数、半程级数 傅里叶变换:傅里叶变换的定义和性质、正弦和余弦变换。 第二单元 拉普拉斯变换:拉普拉斯变换简介、初等函数的拉普拉斯变换、拉普拉斯变换的性质、尺度变化性质、二阶平移性质、导数的拉普拉斯变换、逆拉普拉斯变换及其性质、卷积定理、应用 LT 解常微分方程 第三单元 变系数二阶线性微分方程:方法 已知一个积分、去除一阶导数、改变独立变量和改变参数、用级数法求解 第四单元 一阶线性和非线性偏微分方程:偏微分方程的公式、直接积分解方程、拉格朗日线性方程、查皮特方法。 二阶及高阶线性偏微分方程:具有常系数的 n 阶线性齐次和非齐次偏微分方程。分离变量法解波动和热方程 第五单元 向量微积分:向量的微分、标量和向量点函数、梯度的几何意义、单位法向量和方向导数、散度和旋度的物理解释。线积分、面积积分和体积积分、格林散度定理、斯托克斯散度定理和高斯散度定理 参考文献
项目名称 理学学士 – 人工智能与机器学习 课程代码/名称 UGAM101 / 线性代数与微积分 年份/学期 I / ILTPC 3 1 0 4 课程目标: 1. 用矩阵方法解释线性方程组的解。 2. 讨论级数的收敛和发散。 3. 解释二元函数的偏导数和极值 4. 讨论标量和矢量函数的物理解释 5. 讨论矢量线、曲面和体积积分。 课程成果: 成功完成课程后,学生将能够: 1. 应用矩阵方法解线性方程组 2. 测试无限级数的收敛和发散。 3. 确定二元函数的极值。 4. 将向量微分算子应用于标量和向量函数 5. 用格林函数求解线、表面和体积积分,UNIT-I 矩阵 12 矩阵的秩、梯形、线性方程组的一致性、向量的线性依赖性、特征值、特征向量、特征值的性质、凯莱-哈密顿定理、二次型、通过线性变换将二次型简化为标准形式、二次型的性质。UNIT-II 无穷级数 12 数列和级数收敛的定义。正项级数 – 收敛的必要条件、比较检验、极限形式比较检验、达朗贝尔比率检验、拉贝检验、柯西根检验、交错级数、莱布尼茨规则、绝对和条件收敛。 UNIT-III 偏微分及其应用 12 两个或多个变量的函数,偏导数,高阶偏导数,全导数,隐函数的微分,雅可比矩阵,两个变量函数的泰勒展开式,两个变量函数的最大值和最小值。 UNIT-IV 向量微分学 12 标量和向量点函数,向量算子 Del,梯度,方向导数,散度,旋度,Del 两次应用于点函数,Del 应用于点乘积
课程成果: 1)分析序列或级数的性质(收敛或发散)。 2)应用中值定理研究物体的运动。 3)用积分计算面积、体积、质量和重心。 4)应用多元微积分研究多元函数的性质。 5)理解微分方程的概念及其应用 课程内容: 模块一:序列和级数:实数序列、级数、比率和根测试。 模块二:单变量函数微积分:极限、连续性和可微性的回顾。 中值定理:罗尔定理、拉格朗日定理、柯西定理、带余数的泰勒定理、不定式、曲率、曲线追踪。积分学基本定理、积分学平均值定理、定积分的计算、在旋转体面积、长度、体积和表面积中的应用、不定积分:Beta 函数和 Gamma 函数、积分符号下的微分。
PO1 PO2 PO3 PO4 PO5 PO6 CO1 3 3 2 2 2 3 CO2 3 2 2 3 3 2 CO3 3 2 3 3 2 3 CO4 3 3 3 3 2 3 教学大纲: 基础拓扑:简介 黎曼斯蒂尔杰积分:积分的定义和存在性,积分的性质,具有可变极限的积分的积分和微分。 不正确积分:定义及其收敛性,收敛测试, 和 函数。 一致收敛:一致收敛的测试,和函数的极限和连续性定理,函数级数的逐项微分和积分。 幂级数:收敛及其性质。 傅里叶级数:狄利克雷条件、存在性、问题、半程正弦和余弦级数。学习资源:教科书:1. 数学分析原理,Walter Rudin,McGraw Hill,2017,第三版。2. 实分析,Brian S.Thomson,Andrew M.Bruckner,Judith B.Bruner,Prentice Hall
模块3[8L] 数列和级数:数列和级数收敛的基本概念;收敛检验:比较检验、柯西根检验、达朗贝尔比检验(这些检验的语句和相关问题)、拉贝检验;交错级数;莱布尼茨检验(仅语句);绝对收敛和条件收敛。 模块4[10L] 多元函数微积分:多元函数简介;极限和连续性、偏导数、三元以下齐次函数和欧拉定理、链式法则、隐函数的微分、全微分及其应用、三元以下雅可比矩阵最大值、最小值;函数的鞍点;拉格朗日乘数法及其应用;线积分的概念,二重和三重积分。模块 5[10L] 向量微积分:标量变量的向量函数,向量函数的微分,标量和向量点函数,标量点函数的梯度,向量点函数的散度和旋度,
拉格朗日乘数法。(10)数列和级数:数列、数列的极限及其性质、正项级数、收敛的必要条件、比较检验法、达朗贝尔比率检验法、柯西根检验法、交错级数、莱布尼茨规则、绝对收敛和条件收敛。(6)积分学:积分学的平均值定理、反常积分及其分类、Beta 函数和 Gamma 函数、笛卡尔和极坐标中的面积和长度、笛卡尔和极坐标中的旋转立体的体积和表面积。(12)多重积分:二重积分、二重积分的求值、三重积分的求值、积分阶数的变换、变量的变换、二重积分的面积和体积、三重积分的体积。 (10)向量微积分:向量值函数及其可微性、线积分、面积积分、体积积分、梯度、旋度、散度、平面格林定理(包括矢量形式)、斯托克斯定理、高斯散度定理及其应用。 (10)教材,
下文将从广义上讨论量子张量网络,它为我们提供了一种近似和高性能处理量子态的有效方法 [1–3]。由于实际量子计算机应具有大量量子比特,即 n ≥ 1000,基态数为 2 n > 10 300 。这意味着将用户(大)数据输入量子寄存器所需的基本幺正运算数量通常应为同一数量级。因此,只有对某些特殊类型的量子态,才能有效地将此类系统的状态密度矩阵分解为有限的收缩张量族(张量串)。另一方面,几何思想和几何工具,包括量子张量网络几何 [4],在量子计算和量子信息论中相当常见,尤其是在研究纠缠 [5, 6] 和引力的出现 [7] 方面。本篇短文概述了一种新的几何方法,该方法使用具有相对较少独立参数的量子张量网络来模拟量子态。该方法基于在正常坐标下的协变级数,该级数基于具有适当线性联络的 k(k≪n)四维流形的直积以及相应的曲率和/或挠率;我们只考虑 k = 1 的情况,但显然可以推广到任意 k > 1 的情况。给定一个联络(或一个(伪)黎曼度量),计算曲率和挠率的协变导数,然后计算量子态的系数作为秩为 n 的某个张量的分量。参考文献 [8–11] 中给出了级数系数的明确公式和计算方法。第 2 节包含一些必要的数学准备工作和泡利基中量子态的简要描述。在第 3 节中,我们将讨论该级数的协变级数。 3 量子比特量子系统的状态空间由四维流形建模;我们详细描述了具有零曲率和非零挠率的线性连接的情况的协变展开。第 4 节给出了为三量子比特的量子系统建模 Greenberger-Horne-Zeilinger (GHZ) 状态的说明性示例。