摘要:在成年啮齿动物中,空间学习可增加海马齿状回的神经发生。此前,啮齿动物大脑中另一个主要的神经发生区,即脑室下区 (SVZ),尚未发现类似的效应。尽管大多数 SVZ 产生的神经元会前往嗅球,但一小部分神经元会横向迁移到纹状体。考虑到纹状体在运动学习中的作用,我们想知道运动学习是否会增加成年 SVZ 神经发生。为了验证这一假设,成年雄性 C57Bl/6 小鼠接受了转棒训练,并注射了 5-乙炔基-2'-脱氧尿苷 (EdU) 来标记分裂细胞。使用了两个对照组:模拟训练小鼠静止坐在静止的转棒上,而幼稚小鼠则留在笼子里。在任务完成后 1、7 和 30 天收集大脑,并用 EdU、双皮质素 (DCX) 和 NeuN 进行免疫组织化学处理,以定量分析不同时间点的神经元增殖和存活情况。FACS 对 EdU 标记的细胞核进行分选作为次要测量。我们发现运动学习会增加 SVZ 神经发生,任务完成后一天,与模拟训练小鼠相比,转棒小鼠的 EdU+ 细胞增加了 1.4 倍,总 EdU 强度增加了 1.8 倍。重要的是,一组使用跑步机代替转棒的对照实验表明,在排除运动作为混杂因素的情况下,跑步小鼠和静止小鼠的 SVZ EdU 标记没有差异。转棒小鼠和模拟训练小鼠的 SVZ 中的 DCX 表达最初升高了 1.7 倍,但 7 天后在模拟训练小鼠中恢复到基线水平,而在转棒训练小鼠中仍保持较高水平。这些结果表明,学习诱导的神经发生会在运动训练后的一周内持续进行。转棒训练任务的影响在纹状体中也持续存在一段时间。在训练后 7 天和 30 天,转棒训练小鼠的纹状体 EdU+ 细胞更加丰富。此外,在训练后 7 天,纹状体中存在迁移的 EdU+ / DCX+ 神经元,尽管很少见,但在训练后 30 天仍可识别出存活的纹状体 EdU+ / NeuN+ 神经元。总体而言,这些结果证明了运动学习在成年啮齿动物 SVZ 中的神经发生影响,并表明运动学习可能会驱动未成熟神经元迁移到纹状体。
产后发育中的突触修饰对于神经网络的成熟至关重要。兴奋性突触的发育成熟发生在树突状棘的基因座,受生长和修剪动态调节。纹状体棘投射神经元(SPN)从大脑皮层和thalaus中获得兴奋性输入。spns和纹状体层间间接途径(ISPN)的SPN具有不同的发育根和功能。这两种类型的SPN的树突状脊柱成熟的时空动力学仍然难以捉摸。在这里,我们描绘了伏齿木剂和伏齿核(NAC)中DSPN和ISPN的树突状刺的发育轨迹。我们通过将Cre依赖性的AAV-EYFP病毒微注射到新生儿DRD1-CRE或Adora2a-Cre小鼠中,并通过微注射CRE依赖性AAV-EYFP病毒标记了SPN的树突状刺,并在三个级别上分析了旋转生成,包括不同的SPN细胞类型,子区域和后期。在背外侧纹状体中,DSPN和ISPN的脊柱修剪发生在产后(P)30 - P50。在背侧纹状体中,DSPN和ISPN的脊柱密度在P30和P50之间达到了峰值,而DSPN和ISPN的脊柱修剪分别发生在P30和P50之后。在NAC壳中,在p21 - P30后修剪DSPN和ISPN的棘突,但在NAC外侧壳的ISPN中未观察到明显的修剪。在NAC核心中,DSPN和ISPN的脊柱密度分别达到P21和P30的峰值,随后下降。总体而言,DSPN和ISPN中树突状棘的发育成熟遵循背侧和腹侧纹状体中不同的海上轨迹。
摘要 回顾近年来的亨廷顿舞蹈症动物模型,发现许多microRNA在纹状体和大脑皮层中的表达水平发生改变,且大多下调。发生改变的microRNA包括miR-9/9*、miR-29b、miR- 124a、miR-132、miR-128、miR-139、miR-122、miR-138、miR-23b、miR-135b、miR- 181(均下调)和miR-448(上调),类似的变化此前也在亨廷顿舞蹈症患者中发现过。在动物细胞研究中,发生改变的microRNA包括miR-9、miR-9*、miR-135b、miR-222(均下调)和miR-214(上调)。在动物模型中,miR-155 和 miR-196a 的过表达导致突变型亨廷顿蛋白 mRNA 和蛋白质水平下降,纹状体和皮质中的突变型亨廷顿蛋白聚集体降低,并改善行为测试中的表现。miR-132 和 miR-124 的过表达也使行为测试中的表现得到改善。在动物细胞模型中,miR-22 的过表达增加了感染突变型亨廷顿蛋白的大鼠原代皮质和纹状体神经元的活力,并减少了 ≥ 2 µm 的亨廷顿蛋白富集灶。此外,miR-22 的过表达提高了用 3-硝基丙酸处理的大鼠原代纹状体神经元的存活率。外源性表达 miR-214、miR-146a、miR-150 和 miR-125b 会降低 Hdh Q111 / Hdh Q111 细胞中内源性亨廷顿蛋白 mRNA 和蛋白质的表达。有必要对亨廷顿氏病动物模型进行进一步研究,以验证这些发现,并确定特定的microRNA,它们的过度表达可抑制突变亨廷顿蛋白的产生和其他有害过程,并可能为治疗亨廷顿氏病患者和减缓其进展提供更有效的方法。关键词:动物模型;大脑皮层;亨廷顿蛋白;亨廷顿氏病;microRNA;神经退行性;纹状体;治疗策略
纹状体突触途径在基底神经节的功能中起着至关重要的作用,并且是调节运动功能,情感和认知的皮质基底神经节环的重要组成部分。这项研究的目的是检查蒂诺斯波拉山脉(TC)叶子和塞内加尔氏菌(Khaya senegalensis)(KS)对纹状体缺血损伤的潜在治疗益处。组成的11组(n = 5)组成的五十五个成年雄性Wistar大鼠,体重在184至254 g之间:将蒸馏水(每公斤2毫升)用作对照。包括AMT(750 mg/kg),KS(200 mg/kg) + AMT,KS(300 mg/kg) + AMT,KS(400 mg/kg) + AMT的组; TC(200 mg/kg) + AMT; TC(300 mg/kg) + AMT; TC(400 mg/kg) + AMT; com(200 mg/kg) + amt; COM(300 mg/kg) + AMT和COM(400 mg/kg) + AMT。口服治疗时间为14天。大鼠颈部脱位以阻止实验,并去除脑组织并保存在10%缓冲盐水中。TNF-α结果在AMT处理的大鼠中显着增加(P <0.05)(P <0.05)(P <0.05)。与AMT处理的大鼠相比,治疗组的显着下降(328.5±5.24α,380.4±3.43δ和375.3±5.50Δ)。对照组,纹状体细胞的正常细胞结构完整。AMT率(缺血性卒中大鼠)揭示了神经退行性的变化,其特征是细胞肥大和血管周水肿,反应性星形胶质细胞和小胶质细胞的增殖。然而,KS,TC和COM KS+TC的处理可以通过保留纹状体细胞细胞结构,特别是使用COM KS+TC 400 mg/kg治疗,可以显着改善纹状体细胞变性。的发现表明,COM KS+TC具有抗炎特性,这可能在缺血性中风的治疗和管理中具有潜在的好处。
仅通过使用绝对SUV平均值,而不是标准的迭代重建方法,才能区分尾状核中正常结果和病理结果的团队。然而,所有方法都检测到正常发现和病理发现之间的差异,但使用壳质和纹状体的绝对SUV平均值具有更明显的显着性。xspect Quant还能够检测病理扫描中的尾状,壳和纹状体中的明显不对称性。CHUV团队得出的结论是,定量SPECT/CT具有123 I-IOFLUPANE分析的新兴工具,因为绝对SUV可以区分标准SBR方法的较小差异,从而可以较早地检测病理变化。
人类寿命的大脑图表,以在正常衰老和各种神经系统疾病中构建脑解剖结构的动态模型。他们提供了新的可能性来量化从临床前阶段到死亡的神经解剖学变化,那里没有longi tudinal MRI数据。在这项研究中,我们使用大脑图来对脑萎缩的进展进行进行性超核麻痹 - 瑞奇综合征。 我们组合了多个数据集(n = 8170个涵盖整个寿命的健康受试者的质量控制的MRI,以及从四个重复的tauopathy神经疗法的核定型起始(4Rttni)to to to to to to to to contrapice to to to contrapice to to to to to to to to n = 62 MRI的核酸内核(4rtni)的核能效率和健康的效率象征性象征性象征性象征性象征性象征性象征性象征性象征性象征性象征性象征性的效率为麻痹 - 瑞典综合症大脑结构。 然后,我们在时间和空间中映射了健康和进行性核上麻痹 - 瑞典邦综合征图表之间的顺序差异。 我们发现了萎缩进展的六个主要阶段:(i)ven tral diencephalon(包括丘脑下核,底胺和红色核),(ii)Pallidum,(iii)脑干,纹状体,纹状体,纹状体和杏仁核,(IV)丘脑,(IV)thalamus,(v)thalamus,(v)lobe和(VI)。 随着时间的流逝,具有最严重萎缩的三个结构是丘脑,其次是钯和脑干。 这些结果与进步性上核瘫痪 - 里希尔森综合症的陶氏病进展的神经病理学分期相匹配,该病理应该在pallido-nigro-luysian系统中开始,并通过纹状体和杏仁核向Cerebral cortral cortex和Caudess和Caudsemton和Caudsemth the Pallido-Nigro-luysian系统开始传播。在这项研究中,我们使用大脑图来对脑萎缩的进展进行进行性超核麻痹 - 瑞奇综合征。我们组合了多个数据集(n = 8170个涵盖整个寿命的健康受试者的质量控制的MRI,以及从四个重复的tauopathy神经疗法的核定型起始(4Rttni)to to to to to to to to contrapice to to to contrapice to to to to to to to to n = 62 MRI的核酸内核(4rtni)的核能效率和健康的效率象征性象征性象征性象征性象征性象征性象征性象征性象征性象征性象征性象征性的效率为麻痹 - 瑞典综合症大脑结构。然后,我们在时间和空间中映射了健康和进行性核上麻痹 - 瑞典邦综合征图表之间的顺序差异。我们发现了萎缩进展的六个主要阶段:(i)ven tral diencephalon(包括丘脑下核,底胺和红色核),(ii)Pallidum,(iii)脑干,纹状体,纹状体,纹状体和杏仁核,(IV)丘脑,(IV)thalamus,(v)thalamus,(v)lobe和(VI)。随着时间的流逝,具有最严重萎缩的三个结构是丘脑,其次是钯和脑干。这些结果与进步性上核瘫痪 - 里希尔森综合症的陶氏病进展的神经病理学分期相匹配,该病理应该在pallido-nigro-luysian系统中开始,并通过纹状体和杏仁核向Cerebral cortral cortex和Caudess和Caudsemton和Caudsemth the Pallido-Nigro-luysian系统开始传播。这项研究支持在人类寿命中使用大脑图表来研究神经退行性疾病的进展,尤其是在没有特定的生物标志物的情况下,如PSP中。
深脑刺激(DBS)是一种有效的治疗方法,可用于患有其他耐药性精神疾病(包括强迫症)的患者。皮质 - 纹状体回路的调节已被认为是一种作用机理。为了获得机理洞察力,我们监测了小鼠模型中皮质 - 纹状体区域中的神经元活性,以实现强迫性行为,同时系统地改变了内囊DBS的临床上与临床相关的参数。dbs对大脑和行为均显示出剂量依赖性的作用:招募了越来越平衡的激发和抑制性的数量,散布在整个皮质纹状体区域,而过度的修饰却降低了。这种神经元的募集并没有改变基本的大脑功能,例如静息状态活动,并且仅发生在清醒的动物中,表明对网络活动的依赖性。除了这些广泛的效果外,我们还观察到内侧轨道额皮层在治疗结果中的特定参与,这是通过光学刺激证实的。一起,我们的发现提供了机械洞察力,即DB如何对强迫行为发挥治疗作用。
AHR病是一种罕见的,退化的神经系统疾病。该疾病首先是由德国神经科医生Karl Theodor Fahr在1930年描述的。1 FAHR综合征的发病机理和临床表现,也称为双侧纹状体反齿状钙化(BSPDC)或Chavany-brunhes综合征,部分了解到,但仍然有很多可发现的东西。2钙化位于苍白球,纹状体,牙齿核,基底神经节以及大脑和小脑的白色和灰质内。在组织学上,钙化由嵌入蛋白质 - 糖糖络合物中的非动态化合物组成。2沉积物的组成包括钙,锌,铁,铝,镁,硅,铜和磷,根据位置以及与血管接触而变化。3
摘要 尽管时间是生命的一个基本维度,但我们不知道大脑各个区域如何协作来跟踪和处理时间间隔。值得注意的是,对学习过程中神经活动的分析很少,主要是因为计时任务通常需要很多天的训练。我们研究了当动物学习计时 1.5 秒间隔时,时间编码是如何演变的。我们设计了一种新颖的训练方案,让大鼠在一次训练中从幼稚到熟练的计时表现,这让我们能够研究非常早期学习阶段的神经元活动。我们使用药理学实验和机器学习算法来评估内侧前额叶皮层和背侧纹状体的时间编码水平。我们的结果显示,在时间学习过程中,内侧前额叶皮层和背侧纹状体之间存在双重分离,前者致力于早期学习阶段,而后者在动物熟练掌握任务时参与其中。
急性施用左旋多巴或多巴胺受体激动剂减轻PD运动症状并增加,例如,PD患者的手指攻击速度(Nutt等人1997)。 单剂量的效果在24小时后完全可逆,因此称为短持续时间响应(SDR)。 长期接受左旋多巴的患者显示出额外的长时间响应(LDR),需要数周的时间才能建立和至少几天才能消失。 LDR与SDR叠加,无法用药代动力学来解释。 已经提供了对LDR的不同解释,包括左旋多巴的存储。 然而,也可以观察到LDR的作用短,而作用于多巴胺受体的幼虫(Stocchi et al。) 2001)。 基于可用数据,我们目前假设SDR是由于Albin和de Long模型所代表的基底神经节射击率的急性变化而引起的(图 1 a)。 相比之下,LDR是由神经兴奋性和连通性的塑性变化引起的(图 1 b)。 在Elldopa研究中还观察到了LDR,在1年中,用安慰剂或左旋多巴治疗患者,最高600 mg/d治疗患者。 600毫克左旋多巴的患者在达到稳定剂量的左旋多巴后的运动性能增加了,并且在勒沃达帕(Levodopa)撤回2周后,研究结束时的运动性能要好得多(Fahn等人。 2004)。 2020)。 在所有这些研究中,LDR的大小大大大于SDR,突出了理解LDR构成的细胞机制的治疗潜力。1997)。单剂量的效果在24小时后完全可逆,因此称为短持续时间响应(SDR)。长期接受左旋多巴的患者显示出额外的长时间响应(LDR),需要数周的时间才能建立和至少几天才能消失。LDR与SDR叠加,无法用药代动力学来解释。已经提供了对LDR的不同解释,包括左旋多巴的存储。然而,也可以观察到LDR的作用短,而作用于多巴胺受体的幼虫(Stocchi et al。2001)。基于可用数据,我们目前假设SDR是由于Albin和de Long模型所代表的基底神经节射击率的急性变化而引起的(图1 a)。相比之下,LDR是由神经兴奋性和连通性的塑性变化引起的(图1 b)。在Elldopa研究中还观察到了LDR,在1年中,用安慰剂或左旋多巴治疗患者,最高600 mg/d治疗患者。600毫克左旋多巴的患者在达到稳定剂量的左旋多巴后的运动性能增加了,并且在勒沃达帕(Levodopa)撤回2周后,研究结束时的运动性能要好得多(Fahn等人。2004)。 2020)。 在所有这些研究中,LDR的大小大大大于SDR,突出了理解LDR构成的细胞机制的治疗潜力。2004)。2020)。在所有这些研究中,LDR的大小大大大于SDR,突出了理解LDR构成的细胞机制的治疗潜力。在最初有药物幼稚的晚期PD患者的队列中,LDR最近通过在左旋多巴治疗1或2年后通过相机性能估算,并隔夜退出基线值(Cilia等人在功能上,LDR存储多巴胺药物的作用,就像缓冲液一样,并导致运动性能在PD的蜜月期间通常不会波动,即使每天仅在三个时间点上服用多巴胺能药物。在此阶段,当患者忘记服药时,运动性能通常不会改变。因此,患者可能会出现他们的药物无效的错误印象。当临床医生想验证这些患者的运动症状确实对多巴胺能药物的反应时,他们需要比通常在波动患者中使用的时间更长的时间进行多巴形戒断。在这种情况下,我们注意到急性左旋多巴挑战