缩写:乙酰辅酶 A,乙酰辅酶 A;ASCVD,动脉粥样硬化性心血管疾病;ATM,脂肪组织巨噬细胞;BCG,卡介苗;CRP,高敏 C 反应蛋白;DAMP,损伤相关分子模式;FH,富马酸水合酶;H3K27ac,组蛋白 3 赖氨酸 27 乙酰化;H3K4me1,组蛋白 3 赖氨酸 4 单甲基化;H3K4me3,组蛋白 3 赖氨酸 4 三甲基化;HIF1 α,缺氧诱导因子 1 α;HITI,高血糖诱导的训练免疫;IL-1 β,白细胞介素 1 β;IL-6,白细胞介素 6;Ldlr,低密度脂蛋白受体; Lp(a),脂蛋白(a);LPS,脂多糖;LXRs,肝脏X受体;mTOR,雷帕霉素的机制靶点;NK,自然杀伤细胞;oxLDL,氧化LDL;OxPLs,氧化磷脂;PAMPs,病原体相关分子模式;PBMCs,外周血单核细胞;PRRs,模式识别受体;SAT,皮下脂肪组织;TCA,三羧酸循环;TIH,短暂性间歇性高血糖症;TLR,Toll样受体;TNF-α,肿瘤坏死因子α;VAT,内脏脂肪组织;WD,西方饮食。
规范BRG/BRM相关因子(CBAF)复合物对于在哺乳动物细胞中增强剂的染色质开放至关重要。但是,开放染色质的性质尚不清楚。在这里,我们表明,除了产生无组蛋白的DNA外,CBAF还会产生稳定的半糖体样中核小体颗粒,这些核小体颗粒含有与50-80 bp的DNA相关的四个核心组蛋白。我们的全基因组分析表明,CBAF通过靶向和分裂脆弱的核小体来制造这些颗粒。在小鼠胚胎干细胞中,这些亚核体成为主转录因子OCT4的体内结合底物,而与OCT4 DNA基序的存在无关。在增强子处,与在无组蛋白DNA上占据的区域相比,OCT4 – subnuceosoms相互作用增加了Oct4占用率,并将OCT4结合的基因组间隔放大至一个数量级。我们提出,CBAF依赖性亚核体策划了一种分子机制,该分子机制在其DNA基序以外的染色质开放中发挥了OCT4功能。
14:35 15:05 神经发育障碍中的组蛋白 H3K36 甲基化 Carol Chen,加拿大不列颠哥伦比亚大学
分离是分析化学或化学测量科学的关键步骤,使复杂样品分解为单个成分。通过在空间或时间上分离这些组件,分离通过消除样品基质物种的干扰来提高分析精度。此功率也使净化成为可能进行进一步研究。此外,分离可以通过集中目标成分来扩大后续的分析方法。已建立和成熟的分离技术被广泛用于科学研究中,但是分析任务的复杂性日益复杂,需要先进的技术。这个主题藏品展示了这个不断发展的领域的趋势和特征。高级分离科学对于应对我们今天面临的挑战至关重要。为了反映这一点,我们策划了一个主题收藏,其中包含来自三个主要国家的五篇评论论文和八个研究论文:中国(10篇论文),日本(2篇论文)和美国(1篇论文)。主题分为三类:分离的高级材料,高级方法和潜在应用。讨论的晚期材料包括分子印刷聚合物,金属有机框架,多孔有机框架,纳米颗粒和纳米线。先进的方法涵盖了连字符技术,例如液相色谱串联质谱法,以及纳米颗粒辅助的超滤,阳离子表面活性剂辅助样品制备,磁性固相提取等。前瞻性应用从手性分离到选择性标记,重点是生物学和生物医学研究。这包括对除草剂残基,肽,蛋白质,代谢产物,对映异构体,单链DNA,信使RNA,细胞外囊泡,表观遗传修饰的组蛋白和质量限制样品的分析。两部值得注意的作品强调了分离科学的最新进展。用于捕获富含CPG的SSDNA的基于ZnO/Sio2 Core/shell纳米纤维设备的第一个报告。这在CPG部位的DNA甲基化分析中具有潜在的应用,这是早期癌症检测的有希望的诊断标记。第二次工作提出了一种蛋白质组学方法,用于定量分析雌二醇刺激下MCF-7细胞中表观遗传组蛋白的修饰。这项研究证明了了解雌激素暴露对肿瘤发生和乳腺癌进展的重要性。开发了一种基于氨基酸在细胞培养(SILAC)中稳定的同位素标记的新型定量蛋白质组学方法,用于分析雌激素暴露下MCF-7细胞中的组蛋白的翻译后修饰和蛋白质表达变化。该研究确定了49个组蛋白变异,有42个量化,揭示了两种与乳腺癌相关的差异表达蛋白。对470个组蛋白肽的分析,具有各种修饰,例如甲基化,乙酰化和磷酸化,表明150个差异表达。值得注意的是,组蛋白H10和H2AV影响了核小体结构和基因激活。在雌激素受体(ER)激活后,Kat7的募集可能会影响特定部位的H4乙酰化。此外,HDAC2的表达和核总质转运对于调节组蛋白乙酰化至关重要。这项工作强调了基于LC-MS/MS的定量蛋白质组学在理解组蛋白修饰的生理作用方面的力量。
基于CRISPR的功能基因组学筛查可以设计用于鉴定增加肿瘤免疫原性的新型癌细胞固有靶标。使用基于FACS的CRISPR分类屏幕用于PD-L1表达,我们确定了正式的组蛋白 - 赖氨酸-N-甲基转移酶1和2(EHMT1/2)是干扰素信号通路的负调节剂。EHMT1和EHMT2是组蛋白H3的单甲基赖氨酸9的组蛋白甲基转移酶,以抑制定义靶基因的基因转录。基因敲除或对癌细胞中EHMT1/2的药理抑制作用导致基因启动子的抑制,干扰素刺激的基因(ISGS)的上调以及炎性细胞因子的分泌。在这里,我们介绍了TNG917的临床前表征 - 口服和高度选择性的EHMT1/2抑制剂,具有低纳摩尔细胞效力,以及有利的药效和药物性特性。在人性化和合成小鼠模型中,与抗PD1结合使用TNG917处理促进了T细胞浸润的肿瘤微环境,导致了显着的抗肿瘤活性,并带来了生存益处。总而言之,我们的体外和体内研究为免疫冷肿瘤患者的临床发展路径提供了临床发育路径的基本原理。
表观基因组学是研究整个基因组的表观遗传变化的学科,它对理解基因表达的控制及其对癌症生物学的影响大有裨益。表观遗传修饰,包括 DNA 甲基化、组蛋白修饰、染色质重塑和非编码 RNA 调控,与基因突变不同,会影响基因活性而不改变 DNA 序列。这些改变在控制基因表达方面起着关键作用,而基因表达会影响细胞功能,如生长、分化和死亡。表观遗传修饰在癌症中起着重要作用,它会导致基因表达失调,从而沉默肿瘤抑制基因,激活致癌基因,并加剧基因组不稳定。例如,肿瘤抑制基因(如 p16INK4a 和 BRCA1)启动子处 CpG 岛的高甲基化会导致这些基因的转录抑制。相反,整体低甲基化会激活致癌基因并导致染色体不稳定。组蛋白改变和染色质重塑也对基因表达和癌症的发展产生了重大影响。本文介绍了表征表观遗传变化(如 DNA 甲基化、组蛋白修饰、染色质可及性和非编码 RNA 相互作用)的方法。它强调了这些方法对于识别导致癌症发展和进展的表观遗传变化的重要性。通过解决治疗意义和 DNA 甲基化和组蛋白去乙酰化酶抑制剂等新疗法,本综述缩小了基本表观基因组变化与其在临床实践中的可能应用之间的差距。本研究旨在通过提供对表观基因组分析的全面了解来改善癌症检测、预后和治疗,为更加个性化和成功的治疗方法打开大门。
摘要表观遗传调控协调哺乳动物转录,但它们之间的功能联系仍然难以捉摸。为了解决这个问题,我们使用来自 13 种 ENCODE 细胞类型的表观基因组和转录组数据来训练机器学习模型,以预测组蛋白翻译后修饰 (PTM) 的基因表达,对于大多数细胞类型,实现了 ∼0.70 −0.79 的转录组范围相关性。我们的模型重现了组蛋白 PTM 和表达模式之间的已知关联,包括预测转录起始位点 (TSS) 附近的组蛋白亚基 H3 赖氨酸残基 27 (H3K27ac) 的乙酰化会显著提高表达水平。为了通过实验验证这一预测,并研究 H3K27ac 的天然沉积与人工沉积对表达的影响,我们将合成的 dCas9-p300 组蛋白乙酰转移酶系统应用于 HEK293T 细胞系中的 8 个基因和 K562 细胞系中的 5 个基因。此外,为了便于建立模型,我们执行 MNase-seq 来绘制 HEK293T 中全基因组核小体占有水平。我们观察到,我们的模型在准确排序基因对 dCas9-p300 系统的相对倍数变化方面表现良好;然而,与根据其天然表观遗传特征预测跨细胞类型的表达相比,它们对单个基因内倍数变化进行排序的能力明显减弱。我们的研究结果强调,我们需要更全面的基因组规模表观基因组编辑数据集,更好地理解表观基因组编辑工具所做的实际修改,以及改进因果模型,以便更好地从内源性细胞测量转移到扰动实验。这些改进将共同促进理解和可预测地控制动态人类表观基因组的能力,以及对人类健康的影响。
KDM4 蛋白是组蛋白去甲基化酶的一个亚家族,靶向组蛋白 H3 的赖氨酸 9 和 36 的三甲基化,这分别与转录抑制和延长有关。它们在癌症中的失调可能导致染色质结构改变和转录缺陷,从而可能促进恶性肿瘤。尽管 KDM4 蛋白是癌症治疗中有希望的药物靶点,但只有少数药物被描述为这些酶的抑制剂,而对天然化合物作为可能的抑制剂的研究仍然需要。天然化合物是生物活性物质的主要来源,许多已知以表观遗传过程为目标,例如 DNA 甲基化和组蛋白去乙酰化,使其成为发现新组蛋白去甲基化酶抑制剂的丰富来源。在这里,通过转录组分析,我们确定 KDM4 家族失调并且与多种肿瘤组织中的不良预后有关。此外,通过分子对接和分子动力学方法,我们筛选了 COCONUT 数据库,以搜索天然来源的抑制剂,并与 FDA 批准的药物和 DrugBank 数据库进行了比较。我们发现天然产物中的分子在 FRED 对接分析中得分最高。含有糖、芳香环和 OH 或 O- 基团的分子有利于与 KDM4 亚家族蛋白的活性位点相互作用。最后,我们整合了蛋白质-蛋白质相互作用网络,将转录组分析和对接筛选的数据关联起来,以提出可用作多靶点疗法或与 KDM4 酶的潜在天然抑制剂联合使用的 FDA 批准药物。这项研究强调了 KDM4 家族与癌症的相关性,并提出了可用作潜在疗法的天然化合物。
研究成果の概要(英文):在这项研究中,我们试图开发关键技术,以建立一种方法来通过将CRISPR-CAS9,组蛋白修饰识别域和双分子荧光互补(BIFC(BIFC)相结合,以跟踪活细胞中组蛋白修饰的时空动力学。我们测试了一个称为GFP-clamp的新分子,该分子延迟了GFP衍生的荧光蛋白的光漂白,从而增强了活细胞成像的时间分辨率。我们开发了一种使用单链DNA结合蛋白RFA1评估引导RNA的体内功能的方法,该方法可以有效评估CRISPR-CAS系统中指南RNA的功效。
a 韩国科学技术研究院脑科学研究所脑疾病中心,首尔 02792,韩国 b 汉阳大学 HY-KIST 生物融合系,首尔 04763,韩国 c 崇实大学化学系和综合基础科学研究所,首尔 06978,韩国 d 韩国科学技术研究院研究资源部研究动物资源中心,首尔 02792,韩国 e 釜山国立大学化学系,釜山 46241,韩国 f 亚洲大学分子科学与技术系,水原 16499,韩国 g 加州大学洛杉矶分校 (UCLA) 化学与生物化学系,洛杉矶,CA 90095-1569,美国 h 加州大学洛杉矶分校 (UCLA) 大卫格芬医学院 Vatche 和 Tamar Manoukian 消化系统疾病科系统生物医学中心,洛杉矶, CA 90095,美国 i 汉阳大学医学院病理学系,首尔 04763,韩国