重量是药物毒性和副作用的敏感指数,还使用电子量表来监测裸鼠体重的变化。每3天称重裸小鼠,并绘制裸鼠重量变化的时间曲线。在上述治疗结束后,用麻醉对裸鼠进行安乐死,然后使用4%多甲醛的组织固定溶液将肿瘤,心脏,肝脏,脾脏,肺,肺和肾脏剥离并固定24小时。收集裸鼠的肿瘤和器官组织,并染色苏木精和曙红(H&E),以观察任何组织病理学变化。收集裸鼠的血液进行血液学和生化分析。使用丙氨酸氨基转移酶(ALT)和天冬氨酸氨基转移酶(AST)评估血清肝功能,而肾功能是通过
细胞膜含有多种脂质,由于缺乏原位控制调节膜组成的方法,人们对于单个脂质生物学功能的了解一直受到阻碍。在这里,我们提出了一种编辑磷脂的策略,磷脂是生物膜中最丰富的脂质。我们的膜编辑器基于细菌磷脂酶 D (PLD),它通过水或外源醇对磷脂酰胆碱进行水解或转磷脂酰化来交换磷脂头部基团。利用哺乳动物细胞中活性依赖性的定向酶进化,我们开发并从结构上表征了一个“超级PLD”家族,其活性比野生型 PLD 高 100 倍。我们证明了超级PLD 在活细胞中特定细胞器膜内光遗传学编辑磷脂以及体外生物催化合成天然和非天然设计磷脂的实用性。除了超级PLD之外,哺乳动物细胞中基于活动的定向酶进化是一种可推广的方法,可以设计出额外的化学酶生物分子编辑器。
PKH67绿细胞膜标记试剂盒使用专有的膜标记技术稳定地融入了带有长脂肪型尾巴(PKH67)的绿色荧光染料中,并将其纳入细胞膜的脂质区域。套件(稀释剂C)中提供的标记缓冲液是一种水溶液,旨在保持细胞活力,同时在标记步骤中最大化染料溶解度和染色效率。稀释剂C对哺乳动物细胞是同性渗透性的,不含洗涤剂或有机溶剂,但也缺乏生理盐和缓冲液。根据标记的细胞类型,标记的细胞的出现可能从明亮,均匀到点状或斑点变化。
本文档是已发表作品的已接受手稿版本,该作品最终以 ACS Applied Materials & Interfaces 的形式发表,版权归 © American Chemical Society 所有,由出版商经过同行评审和技术编辑。要访问最终编辑和出版的作品,请访问 https://doi.org/10.1021/acsami.1c16543。
收到日期:2013 年 3 月 27 日;修订日期:2013 年 5 月 29 日;接受日期:2013 年 5 月 30 日摘要目的:评估低时间微波照射使白色念珠菌失活和细胞膜完整性受损的能力。材料和方法:获取两份 200 毫升的白色念珠菌悬浮液。将无菌假牙放置在装有实验组 (ES) 或对照悬浮液 (CS) 的烧杯中。将 ES 在 650 W 的微波下加热 1、2、3、4 或 5 分钟。使用亚甲蓝染料对悬浮液进行光学计数作为膜受损细胞的指示;涂抹在琼脂 Sabouraud 葡萄糖 (ASD) 上进行活力测定;或在 550nm 下进行分光光度法测量。对无细胞溶液进行蛋白质含量分析(Bradford 和焦性没食子酸红法);Ca ++(甲酚酞络合剂法); DNA(分光光度计测量260nm)和K +(选择性电极技术)。通过Student-t检验和线性回归(α=0.05)分析数据。此外,使用碘化丙啶对悬浮液中的念珠菌细胞进行流式细胞术分析。结果:所有ES细胞在3、4和5分钟时均出现细胞膜损伤,3、4和5分钟ES ASD板上均不存在活细胞,并且ES和CS的光密度在所有暴露时间内没有显著差异。与CS相比,ES细胞在暴露2分钟后释放出高含量的蛋白质、K + 、Ca ++和DNA。在微波暴露时间方面,流式细胞术分析观察到了相似的结果。结论:微波照射3分钟后可灭活白色念珠菌,暴露2分钟后可破坏细胞膜完整性。
构建细胞膜的功能模拟物是开发合成细胞的重要任务。到目前为止,脂质和两亲性嵌段共聚物是最广泛使用的两亲物,前者形成的双层膜缺乏稳定性,而后者形成的膜通常具有非常缓慢的动力学特征。在此,介绍了一种新型 Janus 树枝状聚合物,其含有两性离子磷酸胆碱亲水头基 (JD PC ) 和 3,5-取代的二氢苯甲酸酯基疏水树枝状大分子。JD PC 在水中自组装成两性离子树枝状大分子体 (z-DS),其在厚度、柔韧性和流动性方面忠实地再现细胞膜,同时具有耐受恶劣条件的能力,并且在膜破裂时表现出更快的孔闭合动力学。这使得混合 DS 能够与天然膜成分(包括成孔肽、结构导向脂质和聚糖)一起制造,以创建筏状结构域或洋葱囊泡。此外,z-DS 还可用于创建具有类似生命特征的活性合成细胞,这些特征可以模拟囊泡融合和运动以及环境感应。尽管 z-DS 具有完全合成的特性,但它是最小的细胞模拟物,可以与生命物质整合和相互作用,并具有模拟类似生命特征及其他特征的可编程性。
摘要:纳米囊化已成为药物输送,增强稳定性,生物利用度以及使受控的,有针对性物质递送到特定细胞或组织的最新进展。但是,传统的纳米颗粒交付面临诸如短期流通时间和免疫识别之类的挑战。为了解决这些问题,已建议将细胞膜包被的纳米颗粒作为实际替代方法。生产过程涉及三个主要阶段:细胞裂解和膜破碎,膜分离和纳米颗粒涂层。细胞膜通常使用均匀化或超声处理的低渗裂解来碎片。随后的膜片段通过多个离心步骤隔离。可以通过挤出,超声处理或两种方法组合来实现涂层纳米颗粒。值得注意的是,该分析揭示了缺乏普遍适用的纳米颗粒涂层方法,因为这三个阶段的程序在其程序上有显着差异。本综述探讨了当前的开发和细胞膜包裹的纳米颗粒的方法,强调了它们作为靶向药物递送和各种治疗应用的有效替代方案的潜力。
摘要 癌症是一种恶性疾病,由于其高度异质性、高死亡率和发病率,以及缺乏有针对性的有效治疗方案,因此受到越来越多的关注。最近,仿生和自然启发原理引入纳米系统的开发,对癌症治疗和诊断产生了重大影响。生物膜表面工程纳米系统是受生物启发的纳米结构,具有模拟细胞的特征,可改善体内与周围生物环境和细胞的相互作用。这些下一代纳米尺寸的递送系统可以通过提供高度特异性、针对性和更安全的纳米药物来增强传统癌症疗法的治疗效果和安全性。在此,我们讨论了细胞膜涂层仿生纳米装置的独特特性(包括卓越的生物相容性、免疫逃避和组织归巢特性),这些特性有望实现针对骨肉瘤的诊断、治疗和治疗诊断。我们还总结了细胞膜和混合细胞膜涂层纳米系统在原发性骨癌和转移性情况下的最新进展,尤其是前列腺癌衍生的骨转移。还强调了成功临床转化的未来前景和挑战。关键词:仿生涂层、骨癌、骨肉瘤、细胞膜涂层、纳米系统、混合细胞膜涂层、骨肉瘤靶向药物
摘要:基于纳米颗粒的药物输送系统通过增强抗肿瘤药物的溶解度和稳定性来保持癌症治疗的希望。尽管如此,靶向不足和有限的生物相容性的挑战仍然存在。近年来,由于其出色的性状,包括精确的靶向,低毒性和良好的生物相容性,因此细胞膜纳米生物型药物脱粒系统已成为研发的焦点。这篇综述概述了细胞膜仿生纳米递送系统的分类和优势,提供了制剂的介绍,并评估了它们在癌症治疗中的应用,包括化学疗法,基因治疗,免疫疗法,光动力治疗,光疗治疗,光疗治疗和联合疗法。值得注意的是,该评论深入研究了各种细胞膜仿生纳米递送系统的挑战,并确定了未来进步的机会。拥抱细胞膜涂层的仿生纳米颗粒提供了一种新颖且无与伦比的肿瘤疗法大道。