高级糖基化终产物(年龄)积聚在大脑中,导致神经退行性疾病,例如阿尔茨海默氏病(AD)。AD的病理生理受到年龄的受体的影响和Toll-Hody Foceor 4(TLR4)。蛋白质糖基化通过一系列复杂的反应导致不可逆转的年龄,涉及Schiff碱的形成,Amadori反应,其次是Maillard反应,后者会导致脑葡萄糖代谢异常,氧化应激,氧化功能不良,氧化功能不良,线粒体不良,斑块沉积和神经元死亡。淀粉样斑块和其他刺激激活巨噬细胞,这些巨噬细胞是AD发育中至关重要的免疫细胞,触发炎症分子的产生,并促进该疾病的发病机理。AD的风险因动脉粥样硬化,痴呆,高龄和2型糖尿病性麦芽菌(DM)的风险因素增加了一倍。随着个体的年龄,由于糖氧化酶水平降低和年龄累积的增加,神经系统疾病(例如AD)的流行率增加。胰岛素在蛋白质的作用上影响了AD样TAU磷酸化和淀粉样β肽清除的标志,从而影响脂质代谢,炎症,血管反应性和血管功能。高运动组框1(HMGB1)蛋白是神经炎症反应的关键引发剂和激活因子,与神经退行性疾病(如AD)的发展有关。发现TLR4抑制剂可改善记忆力和学习障碍并减少β积累。饮食和生活方式的改变也会减慢广告的进展。需要针对年龄相关途径的新的治疗方法。对抗糖化剂,晚期糖基化终产物(RAGE)抑制剂的受体和破损的治疗研究为干预策略提供了希望。
糖尿病的发生率在全球增加。多年负担糖尿病的人经常因高血糖而出现并发症。正在进行越来越多的研究,突出了炎症是疾病进展的重要因素。在各种糖尿病中,高血糖会导致替代性葡萄糖代谢途径的激活,从而导致有问题的副产品,包括活性氧和高级糖基化终产物。本综述研究了三种特定糖尿病并发症的发病机理。视网膜病,肾病和神经病以及当前的治疗选择。通过考虑研究免疫疗法对动物模型相关状况的影响的最新研究论文,提出了多种策略,用于将来治疗和预防糖尿病并发症,重点是与炎症相关的分子靶标。
糖尿病性肾病的发病机理是多因素的,涉及各种分子和细胞过程。高血糖(糖尿病的标志)在发起和永久性肾脏损害中起着核心作用。升高的葡萄糖水平激活了多种途径,从而导致晚期糖基化终产物(年龄),氧化应激和炎症的产生。这些过程导致内皮细胞和肾过滤屏障的功能障碍,从而使蛋白质渗入尿液(蛋白尿)并触发肾纤维化。此外,肾素 - 血管紧张素 - 醛固酮系统(RAAS)和转化的生长因子β(TGF-β)途径也与糖尿病性肾病的发展有关。这些途径通过促进血管收缩,炎症和纤维化加剧了肾脏损伤,最终导致肾小球硬化和肾小管间隙纤维化[1]。
荞麦晶粒含有生物活性成分,对心脏代谢生物标志物有已知作用。先前关于仅由小麦粉或餐后抗氧化剂状态,血浆总多酚和晚期糖化终产物(年龄)制成的氧化应激标志物的研究(年龄)高于禁食值,在消耗荞麦含量的面包(BWB)之后,包括临床,动物,动物和表演的影响,以及buck的影响力,以及其他研究,这些研究的影响是临床,动物和表演。多酚摄入,抗氧化剂状态,胰岛素水平和氧化应激标志物。然而,含荞麦面包对这些生物标志物的特定影响对II型糖尿病患者仍然是我们理解的显着差距。我们目前的工作旨在通过探索含荞麦面包对胰岛素水平,多酚摄入,抗氧化剂状态和氧化应激标志物的影响来解决这一差距。在一项随机跨界研究中,分配了16名II型糖尿病的人,以食用由50%荞麦粉的小麦粉或面包制成的对照面包。研究遵循跨界设计,并进行了一到两个冲洗干预措施。前一天晚上12小时后早餐时进行了测试面包。面包摄入2小时后,在基线(禁食)收集血液样本。餐后抗氧化剂状态的两个小时水平,血浆总多酚和晚期糖基化终产物(年龄)显着高于食用荞麦掺入的面包(BWB)后的禁食值。这表明含荞麦的面包改善了血浆总多酚水平和总抗氧化剂状态。我们的研究得出的结论是,含有荞麦的面包的摄入量对等离子体的多酚和抗氧化剂状态产生积极影响。这表明将荞麦掺入面包中可能对生物标志物有良好的影响
摘要:糖尿病与动脉粥样硬化心血管疾病之间存在明确的联系。因此,需要针对两种疾病的治疗方法。目前正在进行临床试验,以探索糖尿病中肥胖,脂肪组织,肠道微生物群和胰腺β细胞功能的作用。炎症在糖尿病生理学和相关代谢疾病中起关键作用。因此,靶向炎症以预防和控制糖尿病的利益增加。糖尿病性视网膜病被称为一种神经退行性和血管疾病,经过数年的糖尿病不良后发生。然而,增加证据表明炎症是与糖尿病相关的视网膜并发症中的关键形象。相互联系的分子途径,例如氧化应激和晚期糖基化终产物的形成,有助于炎症反应。本综述描述了涉及炎症途径的糖尿病代谢变化的可能机制。
2型糖尿病(T2DM)通过多种途径加速了牙周炎的进展。免疫反应异常,炎症过度激活,高级糖基化最终产物的水平增加以及氧化应激在T2DM相关牙周炎的病理生理过程中定义了作用。此外,在糖尿病个体的牙周化中,有高水平的晚期糖基化终产物和葡萄糖。同时,微生物学的进展表明,由T2DM引起的动力障碍也有助于牙周炎的进展。乳杆菌由于其在局部微生物群中的微调功能而引起了人们对这一领域的极大兴趣。累积对乳杆菌的研究详细介绍了其在糖尿病和口腔疾病中的有益作用。在这项研究中,我们总结了与乳酸杆菌介导的T2DM相关牙周炎的改善的新发现的机制,并提出了乳酸杆菌在诊所中的应用。
1 型糖尿病是一种无法治愈的自身免疫性疾病,由于可重复性危机,有希望的治疗方法的临床转化受到阻碍。在这里,两个独立的研究中心通过短期施用晚期糖基化终产物受体 (sRAGE) 拮抗剂来预防小鼠糖尿病。用 sRAGE 治疗可增加胰岛、胰腺淋巴结和脾脏内的调节性 T 细胞 (T regs),从而提高胰岛胰岛素的表达和功能。T reg 耗竭可消除糖尿病保护作用,并显示依赖于使用基因敲除小鼠拮抗 RAGE。用 RAGE 配体治疗的人类 T regs 下调了抑制、迁移和 T reg 稳态的基因 (FOXP3、IL7R、TIGIT、JAK1、STAT3、STAT5b、CCR4)。 sRAGE 逆转了抑制功能的丧失,其中 T regs 增加了增殖并抑制了常规 T 细胞分裂,证实了 sRAGE 扩增了功能性人类 T regs。这些结果突出了 sRAGE 是一种预防糖尿病的有吸引力的治疗方法,在多个研究中心和人类 T 细胞中显示出有效性和可重复性。
糖尿病心肌病(DCM)是临床常见的糖尿病微血管病变之一。疾病早期无明显临床症状,中晚期可出现心肌梗死、心律失常,甚至心力衰竭,影响患者的生命健康。心肌梗死作为DCM终末期病理特征之一,是导致心室壁僵硬、心力衰竭等预后不良的关键因素,影响患者的临床进程和结局。高糖环境下心肌梗死的发生发展涉及多种复杂的成纤维细胞途径,这些途径共同作用激活成纤维细胞,从而促进心肌梗死。事实上,心脏成纤维细胞(CFs)的异常激活是心肌梗死的关键因素。因此,抑制CFs的激活可能成为治疗DCM的新策略。先前的研究表明,中草药(CHM)在治疗DCM方面具有潜力。本文首先介绍了CFs的生理和功能,讨论了CFs在糖尿病发病过程中病理激活的条件,然后系统总结了中药通过控制晚期糖基化终产物的产生、氧化应激和炎症等对CFs激活的影响,阐明了中药抑制CFs激活的潜力,为DCM的治疗提供新的思路。
短链脂肪酸(SCFA)是一类有机脂肪酸,长度为1至6碳。它们是由非消化碳水化合物(NDC)发酵的主要终产物。它们是断奶后反刍动物的基本能源。SCFA通过肠道菌群向宿主表示饮食的主要碳浮标。它们在调节胃肠道(GIT)的细胞膨胀和基因表达方面也起着至关重要的作用。最近,在理解SCFA及其与宿主的相互作用的免疫调节作用方面取得了显着进展。这项研究所涉及的过程涵盖了浮游性激活,淋巴细胞的增殖以及肠粘膜免疫成熟的成熟。重要的是要注意,肠粘膜免疫系统的建立和成熟与肠上皮细胞(IEC)(IEC)和肠道微生物群的稳态相关。因此,对SCFA在肠胃粘膜免疫反应中的作用的见解将增强我们对它们各种调节功能的理解。本综述旨在分析有关SCFA作为肠道菌群与动物健康之间基本信号分子作用的最新证据。此外,我们还提供了有关乳制犊牛肠粘膜免疫反应中SCFA的当前文献的摘要。
物种(RNS)[9]。在糖尿病中,晚期糖基化终产物(AGES)的积累、山梨醇和己糖胺途径的激活以及蛋白激酶C介导的各种途径导致氧化应激增加[10-12]。这种氧化应激失衡可能导致多种大分子(如脂质、蛋白质和DNA)的细胞损伤[13,14]。脂质是自由基的主要靶点,导致脂质过氧化;当自由基攻击含有碳双键的脂肪酸,尤其是多不饱和脂肪酸(PUFA)时,就会发生这种情况[13,15]。损伤在于细胞膜的物理和化学性质的改变,导致功能改变、水肿和细胞死亡[14,16,17]。脂质过氧化研究最多的副产物是丙二醛(MDA)[18,19]。然而,通常情况下,酶和非酶抗氧化机制能够最大限度地减少氧化应激造成的损害[20,21]。