我的论文重点关注生成模型及其在离散数据中的应用。我们提出了新颖的算法,将最先进的生成模型的见解与离散数据类型的领域特定知识相结合。这些算法旨在增强与训练数据的属性相似性,提高数据有效性,并提高生成输出的整体质量。我的论文的第一部分研究了使用上下文无关语法将几何图像转换为离散表示。我们讨论了在大型搜索空间中识别合适表示的有效且可扩展的技术。我的论文的第二部分研究了变分自动编码器 (VAE) 在恢复嵌入在低维流形中的高维数据时的行为,评估了它们恢复流形及其上的数据密度的能力。将我们对 VAE 的探索扩展到离散数据领域,特别是在分子数据生成中,我们发现一种增强 VAE 对连续数据的流形恢复的方法也显著改善了离散数据生成。我们使用 ChEMBL 数据集和两个较小的蛋白质靶标活性分子数据集研究了它的优点和局限性。最后,为了解决生成稳定三维分子的难题,该论文将不可微分化学预言机 GFN2-xTB 融入去噪过程,以改善几何形状和稳定性。该方法已在 QM9 和 GEOM 等数据集上得到验证,表明生成的分子具有更高的稳定率。
深度卷积神经网络 (DNN) 取得了显著成功,广泛应用于多种计算机视觉任务。然而,其庞大的模型规模和高计算复杂度限制了其在 FPGA 和 mGPU 等资源受限的嵌入式系统中的广泛部署。作为两种最广泛采用的模型压缩技术,权重剪枝和量化分别通过引入权重稀疏性(即强制将部分权重设为零)和将权重量化为有限位宽值来压缩 DNN 模型。尽管有研究尝试将权重剪枝和量化结合起来,但我们仍然观察到权重剪枝和量化之间的不协调,尤其是在使用更激进的压缩方案(例如结构化剪枝和低位宽量化)时。本工作以 FPGA 为测试计算平台,以处理单元(PE)为基本并行计算单元,首先提出一种 PE 级结构化剪枝方案,在考虑 PE 架构的同时引入权重稀疏化,并结合优化的权重三元化方法,将权重量化为三元值({- 1 , 0 , +1 }),将 DNN 中主要的卷积运算从乘法累加(MAC)转换为仅加法,同时将原始模型(从 32 位浮点数到 2 位三元表示)压缩至少 16 倍。然后,我们研究并解决了 PE-wise 结构化剪枝与三元化之间的共存问题,提出了一种自适应阈值的权重惩罚剪枝 (WPC) 技术。我们的实验表明,我们提出的技术的融合可以实现最佳的 ∼ 21 × PE-wise 结构化压缩率,而 ResNet- 18 在 ImageNet 数据集上的准确率仅下降 1.74%/0.94% (top-1/top-5)。
此预印本的版权持有人(该版本发布于2024年7月24日。; https://doi.org/10.1101/2024.07.23.604802 doi:biorxiv Preprint
Rubrik(NYSE:RBRK)正在执行确保世界数据的任务。使用零信任数据安全™,我们帮助组织对网络攻击,恶意内部人员和操作中断实现业务弹性。Rubrik Security Cloud,由机器学习提供动力,可在企业,云和SaaS应用程序中确保数据。我们帮助组织维护数据完整性,提供可承受不利条件的数据可用性,不断监控数据风险和威胁,并在攻击基础架构时使用其数据恢复业务。
1 Wang Da-heng Center,海伦吉安格量子控制关键实验室,哈尔滨科学技术大学,哈尔滨150080,中国2个国家微观结构实验室,智能光学感应和操纵的主要实验室,以及工程和应用科学学院以及Nanjing University,Nanjing Univentes,Nanjing 210093,En. Del Bosque 115,Colonia Lomas del Campestre,37150León,Gto。 yqlu@nju.edu.cn†这些作者同样贡献。摘要:通过几何阶段与平面光学器件通过几何相位旋转轨道耦合(SOC)为塑造和控制近视结构光提供了有希望的平台。电流设备,从开创性的Q板到最近的J板,仅提供旋转依赖的波前调制,而无需振幅控制。然而,实现对近似SOC状态的所有空间维度的控制需要对相应的复杂振幅的自旋依赖性控制,这对于平面光学元件仍然具有挑战性。在这里,为了解决这个问题,我们提出了一种称为结构化几何相光栅的新型平面元件,该元件能够用于正交输入圆极化。通过使用微结构液晶光平取道,我们设计了一系列扁平式元素,并在实验上显示了它们在任意SOC对照方面的出色精度。该原理通过平坦的光学器件解锁了对副结构光的全场控制,为一般光子SOC态开发信息交换和处理单元提供了一种有希望的方法,以及用于高精度激光束塑形的高精度激光束的外部/腔内转换器。
传统的自由模型通常会隔离自主权,从而导致概念上的显着差距。自由主义者的自由意志强调完全独立于外部决定因素,这是一种理想化和不受约束的代理形式。这种观点忽略了自主权固有地受到系统性和关系影响的方式。另一方面,兼容允许在确定性的边界内自由意志,但会降低自主权,仅与内部欲望相结合,无法说明能够实现道德化增长和反思性决策的机制(Wisniewski等人,2019年)。 坚硬的决定论认为所有人类行为都是由外部因素决定的,它否认了自由的存在。 虽然在逻辑上保持一致,但这种观点忽略了人类通过有意识的努力来反思和重塑其行为的可观察能力。 关系方法(例如关系自主权和集体意图)正确地强调了社会关系在塑造自主权中的作用,但经常将这些影响降低到次要重要性,忽略了人类决策的相互联系和系统性的维度(Christman,1990; Mackenzie&Stoljar,2000; 2000年)。 共同解决了自由意志的发展,关系和道德方面(Frankfurt,1971)。兼容允许在确定性的边界内自由意志,但会降低自主权,仅与内部欲望相结合,无法说明能够实现道德化增长和反思性决策的机制(Wisniewski等人,2019年)。坚硬的决定论认为所有人类行为都是由外部因素决定的,它否认了自由的存在。虽然在逻辑上保持一致,但这种观点忽略了人类通过有意识的努力来反思和重塑其行为的可观察能力。关系方法(例如关系自主权和集体意图)正确地强调了社会关系在塑造自主权中的作用,但经常将这些影响降低到次要重要性,忽略了人类决策的相互联系和系统性的维度(Christman,1990; Mackenzie&Stoljar,2000; 2000年)。共同解决了自由意志的发展,关系和道德方面(Frankfurt,1971)。
摘要 — 本文介绍了一种针对具有参数和动态不确定性混合的系统的结构化鲁棒控制设计方法。所提出的方法在分析步骤和综合步骤之间交替进行。在分析步骤中计算参数不确定性的样本,从而产生仅包含动态不确定性的不确定系统阵列。然后在这个不确定模型阵列上合成控制器。此合成步骤本身涉及为每个不确定系统构建 D 尺度和为整个缩放对象集合调整单个控制器之间的交替。控制器调整使用结构化控制设计技术执行。所提出的方法用于设计柔性飞机的颤振抑制控制器。飞机动力学由高保真模型和降阶模型描述。颤振抑制的设计目标是在存在混合不确定性的情况下实现稳健稳定。所提出的结构化设计方法产生了一个单一的、低阶的、线性时不变 (LTI) 控制器,可将颤振速度提高 15%。提供了额外的稳健性分析和高保真模拟来评估控制器性能。
作者要感谢 Sander van der Pijl 在软件开发过程中提供的帮助。Janet Becker 和 Mark Merrifield 提供了 PILOT 数据,并感谢他们就 Ipan 礁动力学进行的富有成效的讨论。Bart Grasmeijer 提供了 COAST3D 数据和报告。Ellen Quataert 大大改进了 BIRNM XBeach 模型的第一个版本。感谢允许使用美国陆军工程兵水道实验站沿海工程研究中心实地研究设施提供的数据。
摘要 — 本文介绍了一种针对具有参数和动态不确定性混合的系统的结构化鲁棒控制设计方法。所提出的方法在分析步骤和综合步骤之间交替进行。在分析步骤中计算参数不确定性的样本,从而产生一组仅包含动态不确定性的不确定系统。然后在此不确定模型阵列上合成控制器。此合成步骤本身涉及交替为每个不确定系统构建 D 尺度和为整个缩放对象集合调整单个控制器。控制器调整是使用结构化控制设计技术执行的。所提出的方法用于设计柔性飞机的颤振抑制控制器。飞机动力学由高保真度和降阶模型描述。颤振抑制的设计目标是在存在混合不确定性的情况下实现鲁棒稳定性。所提出的结构化设计方法产生了一个低阶线性时不变 (LTI) 控制器,可将颤振速度提高 15%。提供了额外的鲁棒性分析和高保真模拟来评估控制器性能。
摘要 — 本文介绍了一种针对具有参数和动态不确定性混合的系统的结构化鲁棒控制设计方法。所提出的方法在分析步骤和综合步骤之间交替进行。在分析步骤中计算参数不确定性的样本,从而产生一组仅包含动态不确定性的不确定系统。然后在此不确定模型阵列上合成控制器。此合成步骤本身涉及交替为每个不确定系统构建 D 尺度和为整个缩放对象集合调整单个控制器。控制器调整是使用结构化控制设计技术执行的。所提出的方法用于设计柔性飞机的颤振抑制控制器。飞机动力学由高保真度和降阶模型描述。颤振抑制的设计目标是在存在混合不确定性的情况下实现鲁棒稳定性。所提出的结构化设计方法产生了一个低阶线性时不变 (LTI) 控制器,可将颤振速度提高 15%。提供了额外的鲁棒性分析和高保真模拟来评估控制器性能。