3插入,用三个可能的自旋弹道在平均每个位置一个粒子的平均晶格上进行建模。我们提供了一个量子临界点的明确证据,将非磁性均匀金属相与存在长期“自旋”顺序的制度分开。通过不同的摩avors的规则,远程交替的多个连续过渡到磁性状态,随着相互作用强度的提高,其对称性会变化,显着地扩展了海森堡限制到巡回效率的先前工作。除了丰富的量子磁性外,与通常的SU(2)模型相比,这种重要的物理系统还允许研究整数填充和相关的Mott过渡,从而脱离了嵌套的距离。我们的结果还为解释当前和未来的实验提供了关于费米金碱 - 地球原子以及SU(N)物理学的其他实现的重要一步。
磁转运(电导对外部磁场的响应)是揭示外来现象背后基本概念的重要工具,并在实现播种机应用方面起着关键作用。磁转运通常对磁场方向敏感。相比之下,很少见到电子传输的效果和各向同性调制,这在诸如全向感应等技术应用中很有用,尤其是对于原始晶体而言。这里提出了一种策略,以实现对电子传导对电子传导的极强调制,而磁场独立于场方向。GDPS是一种具有电阻率各向异性的分层抗铁磁半导体,它支持具有矛盾的各向同性巨大的巨型磁势敏感对磁性方向不敏感的场驱动的绝缘体到金属转变。这种各向同性磁阻起源于GD 3 +基于GD 3 +的半纤维f-Electron系统的接近零自旋 - 轨道耦合的组合效应以及GD原子中强的现场F - D交换耦合。这些结果不仅为具有非凡的磁转运提供了一种新型的材料系统,可为基于抗铁磁铁的超快和有效的旋转器设备提供缺失的块,而且还展示了设计具有高级功能的所需运输特性的磁性材料的关键成分。
本研究报告了聚合物上硅 (SOP) 的制造。它描述了将直径为 200 毫米的硅薄膜从绝缘体上硅 (SOI) 衬底转移到柔性聚合物的过程。单晶硅膜的厚度小于 200 纳米,转移是通过使用粘合聚合物将 SOI 晶片粘合到临时硅载体上来实现的。研究了转移的各种参数:堆叠的粘附性、粘合温度、临时载体和 Si 膜厚度。通过机械研磨和化学蚀刻去除衬底和 SOI 埋层氧化物。将 Si 薄膜固定在柔性胶带上,然后卸下临时载体。成功获得了由柔性聚合物 (230 µm) 上 20 至 205 nm 的薄 Si 膜组成的 SOP。可以转移直径为 200 毫米的全晶片或图案化晶片。关键词:纳米材料、单晶、硅、键合 1. 简介
光学放大设备是光学通信系统中的关键组件。在1980年代,Erbium掺杂的纤维放大器(EDFAS)是一项开创性的成就,可以实现长途光学通信和革命性的信息传输[1,2],因为EDFA一直为全球基于纤维的通信网络提供了低噪声的高收益,数十年来。erbium离子在覆盖高输出功率的电信带中表现出稳定和低噪声增益,使Erbium掺杂介质非常适合光学放大器和激光器。但是,EDFA通常需要一米至数十米的光纤长度,这使它们容易体现环境波动,并为整合工作带来挑战。半导体光放大器(SOA)具有高增益和集成,但它们具有极化敏感[3],噪声图也相对较高。对比,与不同光子平台的稀土离子掺杂显示了可以有效解决问题的综合掺杂波导放大器(EDWAS)的巨大希望[4,5]。根据1990年代开始对EDWA进行的研究[6]。如今,Edwas引起了重大的兴趣,受益于不同集成光子平台的传播损失,包括氮化硅(SI 3 N 4)[1、7-9] [1、7-9],氧化泰当不是(TEO 2)[10]和Niobate(Niobate(ln)[4、11-18)[4、11-18] [4、11-18] [4、11-18]>尤其是,由于其透明度较大,非线性和出色的电极(EO)特性,LN长期以来一直是光子学的有希望的材料。绝缘子(LNOI)平台上的Niobate锂结合了LN的优势与增强的模式限制,使其成为下一代光子集成电路
对于超大的约瑟夫森连接,当量子效应变得重要时,已经预测了异常相变(DPT)[1]。这种过渡的物理起源是通过与耗散量子力学环境的相互作用来抑制该相的宏观量子隧穿。宏观量子隧道破坏了连接的超导性,而隧道的抑制会恢复超导性。因此,这种过渡通常称为超导体 - 绝缘体过渡(SIT)。sit是针对各种系统的,但是在单个约瑟夫森交界处的检测至关重要,因为它是预期这种过渡的最简单系统,而没有任何其他物理过程掩盖的风险,而在常规或随机的Josephson Junction阵列(如常规或随机的)系统中可能是可能的。在这封信中,我们介绍了我们对R = DV / DL与 /曲线的测量结果,对于各种单个小型隔离的Josephson连接,分流和未分离,具有不同的电容C和正常状态隧道阻力RT的值,我们已经检测到了两种类型的RL-Curves之间的跨界频率,这些RL-Curves具有与本质上的小型cortents syly Cortersents sybles conterents sybles conterents。根据此交叉,我们能够为约瑟夫森连接的整个相图映射[2]。观察到的相边界的位置与原始理论的预期不一致。但是,该理论要考虑到我们的电压测量值的有限准确性(即我们能够检测到的最小电压),很好地解释了观察到的相图。因此,任何DPT都是坐的,但反之亦然。我们的重要结论是,耗散相变(DPT)和超导体 - 绝缘体转变(SIT)的概念并不完全与以前相同。两者都伴随着热度的符号变化,传统上被认为是SIT的签名。我们认为,DPT的真实特征是我们实验中观察到的VI曲线的修改。我们的工作是在约瑟夫森相位临界的单一约瑟夫森(Josephson)中的量子效应的强烈证明和相位运动的带图。
二维(2D)板和一维(1D)纳米替伯苯格几何形状的磁性拓扑绝缘子(MTIS)和超导体(SCS)的异质结构已预计宿主分别为宿主,手给了Mathiral Majoragana(Maginala Majorana Edge States(CMESS)和Majorana Boundana Boundate(Majorana Boundate)。我们研究了这种MTI/SC异质结构的拓扑特性,随着几何形状从宽平板变为准1D纳米替比系统的变化,并随着化学电位,磁掺杂和诱导的超导配对电位的函数。为此,我们构建了有效的对称性受限的低能汉密尔顿人,以解决真实空间的结构。对于具有有限宽度和长度的纳米替物几何形状,我们观察到以CMES,MBS和共存的CMES和MBS为特征的不同相,因为化学电位,磁性掺杂和 /或宽度是不同的。
利用 5G 延迟优势实现的 VCSEL 应用部署可以通过使用商业化技术来遵循行业发展时钟速度而受益。[1] 根据功率输出,VCSEL 器件可以根据沉积材料厚度和结构进行大致分类。[2] 本研究量化了与参考金属化膜铝最相关的双层结构特征,以便有效使用。它基于这些发现探索了成功使用常见金属氧化物绝缘体 (SiO 2 / Al 2 O 3 ) 双层处理所需的多元优化,各向同性溅射沉积厚度为 100nm 至 250nm。提出了一个表征关键变量的模型。此外,它还介绍了一种新的高温双层工艺,使用负像抗蚀剂,能够在高温绝缘体沉积期间保持稳定性。本研究确定了制造成功双层的尺寸目标,用于溅射绝缘体,适用于工艺优化,以促进不断发展的 III-V 应用。介绍
* 通讯作者:陈洪生、李世龙、钱浩良,浙江大学信息与电子工程学院量子信息交叉学科中心、现代光学仪器国家重点实验室,杭州 310027,浙江大学;浙江大学-杭州全球科技创新中心、浙江省先进微纳电子器件与智能系统重点实验室,杭州 310027,浙江大学;浙江大学 ZJU-UIUC 学院国际联合创新中心,海宁 314400,浙江大学,电子邮箱:hansomchen@zju.edu.cn (H. Chen)、shilong.li@zju.edu.cn (S. Li)、haoliangqian@zju.edu.cn (H. Qian)。https://orcid.org/0000-0002-5735-9781 (H. Chen)。 https://orcid.org/0000-0003-4200-9479 (H. Qian) 王海腾、牛俊如、陈巧璐、邵华和杨逸浩,浙江大学信息与电子工程学院现代光学仪器国家重点实验室量子信息交叉学科中心,杭州 310027,中国;浙江大学-杭州全球科技创新中心、浙江省先进微纳电子器件与智能系统重点实验室,杭州 310027,中国;浙江大学 ZJU-UIUC 学院国际联合创新中心,海宁 314400,中国 赵思涵,浙江大学物理学院量子信息交叉学科中心、硅与先进半导体材料国家重点实验室、浙江省量子技术与器件重点实验室,杭州 310058,中国。 https://orcid.org/0000-0003-2162-734X
量子异常霍尔效应(QAHE)已在磁掺杂的拓扑绝缘子中进行了实验观察到。然而,主要归因于吸毒者磁掺杂的超高温度(通常低于300 mk),成为潜在应用的艰巨挑战。在这里,提出了一种非磁性策略来产生铁磁性并在拓扑绝缘子中实现Qahe。我们从数值上证明,在BI 2 SE 3,BI 2 TE 3和SB 2 TE 3中,非磁性氮或碳取代可以诱导磁矩,而只有氮掺杂的SB 2 TE 3系统才能表现出远距离的铁磁性,并保存大型的散装带隙。我们进一步表明,其相应的薄膜可以在17-29开尔文的温度下携带Qahe,这比相似系统中典型实现的温度高两个数量级。我们提出的非磁性掺杂方案可能会阐明拓扑绝缘体中高温QAHE的实验性实现。
摘要:本研究从金属栅极面积、介电薄膜几何形状和厚度效应等方面研究了低介电常数 (low- k ) 材料的金属-绝缘体-半导体 (MIS) 电容器结构的可靠性特性。研究使用了两种低 k 材料,即致密和多孔低 k 薄膜。实验结果表明,与致密低 k 薄膜相比,多孔低 k 薄膜的击穿时间更短、威布尔斜率参数和电场加速因子更低、厚度依赖性击穿更弱。此外,还观察到介电击穿投影模型的偏差较大,且各个区域合并的击穿时间分布呈现单个威布尔图。研究还指出,不规则形状的金属栅极 MIS 电容器中多孔低 k 薄膜的介电击穿时间比方形和圆形样品中更长,这与持续电场的趋势相悖。因此,不规则形状的样品中存在另一种击穿机制,需要在未来的工作中进行探索。