通过外延应变制备锰氧化物薄膜 Dong Li 1† 、Bonan Zhu 2† 、Dirk Backes 3 、Larissa SI Veiga 3 、Tien-Lin Lee 3 、Hongguang Wang 4 、Qian He 5 、Pinku Roy 6,7 、Jiaye Zhang 8 、Jueli Shi 8 、Aiping Chen 6 、Peter A. van Aken 4 、Quanxi Jia 7 、Sarnjeet Dhesi 3 、David O. Scanlon 2,3 、Kelvin HL Zhang 8* 和 Weiwei Li 1* 1 南京航空航天大学物理学院,工业和信息化部空天信息材料与物理重点实验室,南京 211106,中国 2 伦敦大学学院化学系,伦敦 WC1H 0AJ,英国 3 Diamond Light Source Ltd.,哈威尔科学与创新园区,迪德科特,牛津郡 OX11 0DE,英国 4 马克斯普朗克固体研究所,Heisenbergstr. 1, 70569,斯图加特,德国 5 新加坡国立大学材料科学与工程系,新加坡,117575,新加坡 6 综合纳米技术中心 (CINT),洛斯阿拉莫斯国家实验室,洛斯阿拉莫斯,新墨西哥州 87545,美国 7 纽约州立大学布法罗分校材料设计与创新系,纽约州布法罗 14260,美国 8 厦门大学化工学院,固体表面物理化学国家重点实验室,能源材料化学协同创新中心,厦门 361005,中国 电子邮件:kelvinzhang@xmu.edu.cn,wl337@nuaa.edu.cn † 这些作者对这项工作做出了同等贡献
低维系统和近量子相变中的量子涨落对材料特性有显著的影响。然而,很难通过实验衡量量子涨落的强度和重要性。这里,我们提供了 Mott 绝缘铜酸盐中磁振子激发的共振非弹性 X 射线散射研究。从 SrCuO 2 薄膜中,推导出单磁振子和双磁振子色散。使用由 Hubbard 模型生成的有效海森堡哈密顿量,我们表明,只有在包含源自磁振子-磁振子相互作用的显著量子校正时,才能令人满意地描述单磁振子色散。对 La 2 CuO 4 的比较结果表明,SrCuO 2 中的量子涨落要强得多,表明更接近磁量子临界点。蒙特卡罗计算表明,其他磁序可能与反铁磁尼尔序竞争基态。我们的结果表明,由于强烈的量子涨落,SrCuO 2 是探索新磁基态的独特起点。
报道了在多铁绝缘体 Cu 2 OSeO 3 中发现了一种新型长寿命亚稳态 skyrmion 相,并用 Lorentz 透射电子显微镜对低于平衡 skyrmion 口袋的磁场进行了可视化。此相可通过用近红外飞秒激光脉冲非绝热激发样品来获得,而任何传统的场冷却协议都无法达到,这被称为隐藏相。根据光创造过程的强烈波长依赖性以及通过自旋动力学模拟,磁弹效应被确定为最可能的光创造机制。该效应导致磁自由能景观的瞬态改变,将平衡 skyrmion 口袋延伸到更低的磁场。对光诱导相的演变进行了超过 15 分钟的监测,未发现任何衰减。由于这样的时间比激光脉冲在材料中引起的任何瞬态效应的持续时间长得多,因此可以假设新发现的 skyrmion 状态在实际应用中是稳定的,从而为在超快时间尺度上按需控制磁状态的新方法开辟了新天地,并大幅减少了与下一代自旋电子器件相关的散热。
拓扑绝缘体是凝聚态物理学中很有前途的材料,因为它们具有特殊的自旋结构,可以产生非常高的自旋到电荷电流相互转换,这对于新兴的低能耗自旋电子学器件具有重要意义。本研究的目的是探索一类有前途的拓扑材料,这些材料具有高可调性等独特特性——半赫斯勒。我们专注于 PdYBi 和 PtYBi 薄膜的外延生长,这些薄膜是在一系列互连的 UHV 装置上生长和表征的,这使我们能够获得一整套原位表面表征,例如电子衍射、扫描隧道显微镜和角度分辨光电子能谱。使用标准 x 射线衍射和扫描透射电子显微镜进行非原位结构表征,用于控制薄膜中的晶体质量和化学有序性。进行了角分辨光电子能谱分析,结果显示布里渊区点附近存在线性状态。此外,我们使用设计了几何形状的片上器件进行热自旋传输测量,以控制热传播,以测试我们化合物的潜在相互转换效率,发现 PdYBi 和 PtYBi 在不同厚度下的自旋塞贝克系数值都大于铂。这一观察结果为使用半赫斯勒开发高效自旋相互转换材料开辟了道路。
强烈的Tera-Hertz(Thz)脉冲的最新进展使得可以研究凝结物质中非线性光学现象的低频对应物,通常用可见光研究,因为这是Thz Kerr效应的情况[1-3]。DC Kerr ef-fect检测到与所施加的直流电场平方成正比的等同于各向同性的材料中的双折射,它是对介质的第三阶χ(3)非线性光学响应的标准测量[4]。基本上,AC探头E AC(ω)和直流泵E DC场之间的四波混合导致非线性极化P(3)〜χ(3)E 2 DC E AC(省略了空间索引)。p(3)依次调节ACFILD的相同频率ω的折射率,其空间各向异性由E DC的方向设置。在其光学对应物中,平方ACFER的零频率的光谱成分在DC组件的零频率上起着相同的作用。最近,THZ和光脉冲已在泵探针设置中合并,以测量所谓的Thz Kerr效应[2]。的主要优势比其全光率降级是,强烈的Thz泵脉冲可以通过在相同频率范围内匹配类似拉曼的低覆盖式激发,例如晶格振动[5-8],或者在破碎的态度状态下(对于9-13-13]或超级效果[14] [14] [14],可以强烈增强信号。这种共振反应通常加起来是电子的背景响应,并且可以用来识别不同自由度之间耦合的微观机制。作为一般规则,Thz Kerr响应(将其缩放为THZ电场平方)不受红外活性
摘要。在本文中,我们提出了一项活动,以介绍公钥加密PHY的概念,并使服务前的STEM教师探索基本信息学以及Mathemati Cal概念和方法。我们遵循教义工程方法中的教学情况理论(在数学教育研究中广泛使用),以使用图形设计和分析有关不对称加密的教学情况。遵循教学工程的阶段,在对内容的初步分析,教学环境的限制和构成之后,我们对情况进行了构思和分析,并特别关注环境(学生可以与学生互动)以及对教学变量的选择。我们讨论了他们对参与者详细说明加密信息所需的解决问题策略的影响。我们实施了我们的情况并收集了定性数据。然后,我们分析了后验参与者使用的不同策略。A后验分析与先验分析的比较显示了活动的学习潜力。要详细阐述不同的解决问题的策略,参与者需要探索和理解数学,信息学和两个学科的前沿中的几种概念和方法,并在不同的符号簿之间移动。
据我们所知,这是在 LNOI 平台上首次演示高阶模式通带滤波器。我们的模式滤波器体积小、损耗低、MER 高、功能可扩展,与其他材料平台上报道的器件相比,是一种极具吸引力的选择(详情请参阅支持信息 S5)。此外,我们的器件还可以使用微电子行业开发的成熟的 CMOS 兼容蚀刻工艺来制造,同时保留了基于 LNOI 平台探索高速电光器件和高效光学非线性器件的能力。
能带结构各点之间的散射矢量。在这方面,傅里叶变换的 QPI 图提供了拓扑绝缘体存在的首批实验证据之一,[4]因为它揭示了背向散射矢量处强度的“缺失”,正如理论所预测的那样。从理论的角度来看,QPI 图的计算主要基于模型方法,例如在拓扑绝缘体表面,[5]其中表面能带结构可以用简单的模型哈密顿量来近似。然而,一般而言,基于密度泛函的方法对于表面电子结构的实际描述是必需的,特别是杂质势,其中杂质周围的电荷弛豫在正确描述散射相移中起着重要作用。密度泛函计算的一个困难是缺陷引起的密度振荡范围非常大,可以达到几十甚至几百纳米,因此超晶胞方法实际上无法达到这个极限。这些挑战只能通过从头算格林函数嵌入方法来解决,比如 Korringa-Kohn-Rostoker(KKR)方法。作为一个应用的例子,我们参考了 Lounis 等人 [6] 对 Cu(111) 和 Cu(001) 表面上的 QPI 的计算,这是由于表面下埋藏着一个孤立杂质。这些结果表明,利用格林函数技术可以在相当大的表面积上对 QPI 图进行从头算计算。然而,对于傅里叶变换的 QPI 图,直接用格林函数卷积来表示结果是可行的[7],避免了计算大表面积中实空间图的中间步骤。在本文中,我们将探讨这个问题,并给出它在拓扑绝缘体领域的应用。在第 2 节中,我们概述了 KKR 方法中实空间和傅里叶变换 QPI 映射的形式。此外,我们讨论了多杂质实际情况的傅里叶变换 QPI,并认为多杂质问题可以用单杂质结果很好地近似。我们还讨论了扩展的联合态密度方法 (exJDOS)。在第 3 节中,我们将我们的形式应用于具有表面杂质的拓扑绝缘体 Bi 2 Te 3。这在 JuKKR 代码包中实现。[8] 最后,我们在第 4 节中进行了总结。
无处不在的真实材料无处不在,可能会对量子相跃迁产生巨大影响。源自该疾病增强的量子波动,量子格里菲斯(Griffiths)奇异性(QGS)已被揭示为低维超导体的量子关键性的普遍现象。然而,由于波动效应较弱,在三维(3D)超导系统中检测实验的QGS非常具有挑战性。在这里,我们报告了与从3D超导体到Anderson临界绝缘体MGTI 2 O 4(MTO)中量子相过渡相关的QGS的发现。在垂直磁场和平行磁场下,在接近量子临界点时的动力学临界指数会发散,证明存在3D QGS。在3D超导体中,MTO显示出相对强大的波动效应,其特征是广泛的超导过渡区域。增强的波动可能是由安德森本地化的迁移率边缘引起的,最终导致发生3D量子相变和QGS。我们的发现提供了一种新的观点,可以理解强烈无序的3D系统中的量子相变。
金属半导体场效应晶体管,10 – 15 ) 等等。特别是 In – Ga – Zn – O (IGZO) 是柔性 TFT 有源通道的有希望的候选者,因为即使在室温下沉积,IGZO 也表现出超过 10 cm 2 V − 1 s − 1 的电子迁移率。16、17) 然而,IGZO TFT 通常需要在 300°C 左右进行热退火,以减少因各种类型的加工损坏而形成的缺陷。18 – 22) 我们小组报告说,通过 Ar + O 2 + H 2 溅射沉积的氢化 IGZO 薄膜非常有希望用于制造低于塑料基板软化温度的氧化物 TFT,以用于未来的柔性设备应用。通过低温(150°C)退火可以减少沉积态IGZO薄膜中产生的缺陷。15、23、24)场效应迁移率(μFE)为13.423)