机器学习系统旨在从数据中学习模式和关联。通常,机器学习方法由输入和输出关系的统计模型以及学习算法组成。3 为了使机器学习方法能够学习模式和关联,人类操作员可以指定要优化的目标函数。4 目标函数是学习算法的核心部分,它指定了模型在接收到更多有关其要表示的输入输出关系的信息(数据形式)时应如何变化。目标函数可以被认为是表达模型在实现人类指定的目标方面有多好。换句话说,目标函数可以被认为是一个数学表达式,如果模型表现不佳(对应高错误率),则目标函数取大数值,如果模型表现良好(对应低错误率),则目标函数取小数值。
数据驱动的交易策略涉及利用定量分析和统计模型来为金融市场的决策提供信息。通过利用广泛的数据集和高级算法,交易者旨在识别模式,趋势和相关性,以开发预测价格变动,优化投资组合分配以及管理风险的预测模型。关键组件包括数据收集,功能工程,模型开发和背景测试,以及历史市场数据至关重要的培训和验证模型。实时数据提要可以持续改进和适应不断变化的市场动态。成功取决于快速,准确地处理大量数据以及基础算法的鲁棒性,从而通过从动态财务景观中提取可行的见解来为交易者提供竞争优势。但是,重要的是要认识到,由于市场条件的潜在转变,对新信息和市场趋势的适应性对于持续疗效至关重要。
摘要:网络化多传感器用于解决机动目标跟踪问题。为避免非线性动态函数的线性化,获得更准确的机动目标估计,提出了一种用于机动目标跟踪的自适应信息加权协同滤波器。利用无迹变换计算伪测量矩阵,以利用测量的信息形式,这是协同迭代所必需的。为提高机动目标跟踪精度并在整个网络的每个传感器节点中获得统一的估计,利用自适应当前统计模型来更新估计,并在各个动态模型的相邻节点之间应用信息加权协同协议。基于多个模型的后验概率,通过对模型条件估计的加权组合来获得每个传感器的最终估计。实验结果表明,所提算法在跟踪精度和全网估计一致性方面具有优异的性能。
摘要:网络化多传感器用于解决机动目标跟踪问题。为避免非线性动态函数的线性化,获得更准确的机动目标估计,提出了一种用于机动目标跟踪的自适应信息加权协同滤波器。利用无迹变换计算伪测量矩阵,以利用测量的信息形式,这是协同迭代所必需的。为提高机动目标跟踪精度并在整个网络的每个传感器节点中获得统一的估计,利用自适应当前统计模型来更新估计,并在各个动态模型的相邻节点之间应用信息加权协同协议。基于多个模型的后验概率,通过对模型条件估计的加权组合来获得每个传感器的最终估计。实验结果表明,所提算法在跟踪精度和全网估计一致性方面具有优异的性能。
动态治疗方案是一系列根据个人随着时间的流逝而不断发展的状态量身定制的治疗决策规则。在精确医学中,已经非常重点放在寻找最佳的动态治疗方案上,如果人口中的每个人都跟随,平均将产生最佳结果。从方法论和应用的角度进行了广泛的研究。本教程的目的是为那些对最佳动态治疗方案感兴趣的读者,具有系统的,详细但易于访问的介绍,包括在因果推理的框架内对该主题的正式定义和表述,确定假设,将兴趣的因果量链接到现有数据和估算方法的现有统计模型和实际方法以及数据和数据的现有方法和数据以及这些方法和数据的现有方法和数据以及这些方法和数据的实际方法以及这些方法以及这些方法和数据的实际方法。
概率时间序列预测在一系列现实世界中(例如能量系统)中起着至关重要的作用,尤其是基于置信区间或基于随机模型的预测性控制的异常检测的预测模型。当难以获得准确且可拖延的第一原理模型(例如,基于物理学的模型)时,深度预测模型特别有用。因此,最近的发展集中在深度学习方法上,这些方法可以从历史数据中识别出模式并提供预测。 C.F.d eep ar [18],n-beats [15]和时间融合变压器(TFT)[13]。虽然深度学习方法可以产生准确的时间序列预测[16],但它们通常也会产生不可靠的预测,有时甚至与传统的统计模型(如季节性ARIMA或经典MLP)相比,甚至表现不佳[10]。此外,对于小型数据集,这些方法容易出现过度拟合或模式崩溃[7,14]。
摘要。公平分配专业的医生是一个重大的公共卫生挑战。以前的研究主要依靠经典的统计模型来估计影响医学生职业选择的因素,但本研究探讨了机器学习技术在研究早期预测决策的使用。我们使用来自瑞士和法国医学院的399名医学院的399名医学生的数据评估了各种监督模型,包括支持向量机,人工神经网络,极端梯度提升(XGBOOST)和CATBOOST。集合方法的表现优于更简单的模型,而Catboost的宏观AUROC为76%。事后解释性方法揭示了影响预测的关键因素,例如成为外科医生的动机和外向性的心理特征。这些发现表明,机器学习可用于预测医疗职业道路并为更好的劳动力计划提供信息。
1助理教授,计算机科学,SSCCS-BHAVNAGAR 2计算机科学助理教授,2 nd作者的组织名称摘要:AI是该技术,它使人类生活的革命性变化。AI技术的目的用于复制人类的智能以解决复杂的问题并产生准确的结果。AI在各个领域被广泛使用,例如医学,教育,研究和体育等。在这里,我们介绍了如何使用AI技术来改善板球运动员的概念。关键字:人工智能,机器学习,板球,技术,数据分析1。简介:人工智能(AI)本质上是创建智能机器,至少在某种程度上可以像人类一样思考和行为。这是计算机科学的一个分支,正在迅速发展,并有可能彻底改变我们生活的许多方面。AI的主要目标是复制机器中的人类智能,以解决复杂的问题并自动化任务。AI通过可以从数据中学习和改进的算法来工作。这些算法可以根据该分析分析信息,识别模式并做出决策。AI有可能大大提高各个行业的效率,生产力和解决问题。然而,需要解决有关偏见,隐私和工作流离失所的道德考虑。EAI是一个庞大而令人兴奋的领域,这只是对智能机器世界的一瞥。随着研究的继续,AI准备在塑造我们的未来方面发挥更大的作用。AI - 机器学习和深度学习语言有两种不同的方法2。机器学习:机器学习语言是设计用于数据分析,模型构建和算法开发的工具。与逐步说明的传统编程语言不同,机器学习语言在处理复杂数据集方面表现出色,并操纵统计模型。Python是一种多功能且广泛使用的语言,提供了丰富的机器学习库生态系统,例如Tensorflow,Pytorch和Scikit-Learn。其可读性和广泛的社区支持使其非常适合初学者和专家。语言R通常受到统计学家的青睐,R为数据探索,可视化和构建统计模型提供了强大的环境。这些语言使机器学习工程师可以专注于算法的核心概念,而不是在低级编程细节中陷入困境。
统计推断证据范式的扩展,而 Shafer 将这些上限和下限概率解释为可信度和信念函数,而不参考具有一对多映射的底层概率空间。这样获得的方法被 Shafer 称为证据理论。它专门用于表示和合并不可靠的证据。相反,由于对随机变量的观察不完整,Dempster 设置中的上限和下限概率也可能模拟未知的概率。第二个想法是使用(凸)概率集,要么是因为统计模型不为人所知,要么是因为生成主观概率的通常协议发生了改变,承认与风险事件相关的彩票的买卖价格可能不同。后者是沃利低预测和不精确概率理论的基础。事实证明,沃利的框架在数学上比 Dempster-Shafer 理论更通用。本章介绍了贝叶斯概率论的这些概括。
摘要:网络化多传感器用于解决机动目标跟踪问题。为了避免非线性动态函数的线性化,并获得更准确的机动目标估计,提出了一种用于机动目标跟踪的新型自适应信息加权共识滤波器。利用无味变换计算伪测量矩阵,以利用测量的信息形式,这是共识迭代所必需的。为了提高机动目标跟踪精度并在整个网络的每个传感器节点中获得统一的估计,利用自适应当前统计模型来更新估计,并在每个动态模型的相邻节点之间应用信息加权共识协议。基于多个模型的后验概率,通过模型条件估计的加权组合获得每个传感器的最终估计。实验结果表明,所提算法在跟踪精度和全网络估计一致性方面具有优异的性能。