DNA 完整性不断面临诱导 DNA 损伤的物质的威胁。所有生物体都配备了 DNA 损伤反应机制网络,可以修复 DNA 损伤并恢复正常的细胞活动。尽管在复制细胞中已经揭示了 DNA 修复机制,但人们对 DNA 损伤在有丝分裂后细胞中的修复方式仍然知之甚少。肌纤维是高度特化的有丝分裂后细胞,以合胞体形式组织,在放射治疗后容易发生与年龄相关的退化和萎缩。我们研究了肌纤维核的 DNA 修复能力,并将其与增殖性成肌细胞中的测量值进行了比较。我们重点研究了纠正电离辐射 (IR) 诱导损伤的 DNA 修复机制,即碱基切除修复、非同源末端连接和同源重组 (HR)。我们发现,在分化程度最高的成肌细胞肌管中,这些 DNA 修复机制表现出 DNA 修复蛋白向 IR 损伤 DNA 募集的动力学减弱。对于碱基切除修复和 HR,这种减弱可能与参与这些过程的关键蛋白的稳态水平降低有关。
•首先,可能会刺激现有肌纤维中的差异化CMS,以进入细胞周期,分裂和改革顶点。•第二,可以通过募集形成新的增生性CM的未分化的祖细胞来进行再生。•关于再生肌肉起源的第三个可能的机制是这两种称为“去分化”的机制的嵌合体,其中现有肌肉将下调收缩基因以创建未分化或不良分化的细胞。
级别。密集的重新介绍会增加LV壁厚和质量,而LV尺寸几乎没有变化。与有氧运动中发现的体积负荷相比,这种运动引起的肥大典型地对称,这是响应压力超负荷而发生的。这种肥大减轻了每个肌纤维的收缩负担,从而保留了正常的LV壁应力。大多数运动学科结合了耐力和力量运动,生理
心肌和心律不齐的纤维化变化代表系统性硬化症(SSC)的致命并发症,但是基本机制仍然难以捉摸。小鼠过度表达转录因子FOSL-2(FOSL-2 TG)代表SSC的动物模型。Fosl-2 tg mice showed interstitial cardiac fi brosis, disorganized connexin-43/40 in intercalated discs and deregulated expression of genes controlling conduction system, and developed higher heart rate (HR), prolonged QT intervals, arrhythmias with prevalence of premature ventricular contractions, ventricular tachycardias, II-degree atrio-ventricular blocks并降低了人力资源变异性。用异丙肾上腺素FOSL-2 TG小鼠刺激后,HR反应受损。与FOSL-2 TG相比,免疫dim dim rag2 - / - fosl-2 tg小鼠受到增强的心肌纤维化和ECG异常的保护。转录组学分析表明,FOSL-2-ERVERSESS是造成心脏纤维细胞的纤维性特征的原因,而FOSL-2 TG小鼠中的炎症成分激活了它们的纤维性和心律失常的作用表型。在人类心脏纤维细胞中,FOSL-2超过表达增强了肌纤维细胞的签名,在proinmotal或pro粘连刺激下。这些结果表明,在免疫性条件下,转录因子FOSL-2夸大了肌纤维纤维肌,心律不齐和对压力的异常反应。
呼吸机诱导的隔膜功能障碍(VIDD)是需要机械通气(MV)和神经肌肉阻滞(NMBA)的重症监护单元(ICU)治疗的常见续集。它的特征是隔膜无力,延长的呼吸器断奶和不良后果。解离性糖皮质激素(例如Vamorolone,VBP-15)和伴侣共同诱导剂(例如BGP-15)先前在ICU-RAT模型中显示出积极影响。在肢体肌肉疾病肌病中,优先肌球蛋白损失占上风,而肌纤维蛋白翻译后修饰在VIDD中更为主导。尚不清楚特定力的明显下降(归一化为横截面区域)是否是收缩性信号变化的纯粹结果,或者隔膜弱点是否也通过肌球的细胞体系结构来迅速发展,以及vbp-15或BGP-15或BGP-15的范围,通过肌发光的细胞体系结构来实现结构性相关。为了解决这些问题,我们进行了无标签的多光子第二次谐波产生(SHG)成像,然后在单个diaphragm肌肉肌中进行定量形态计量学,从健康大鼠进行MV + NMBA的五天或10天的健康大鼠,以模拟ICU治疗而无需混淆病理(例如Sepsis)。大鼠每天接受泼尼松龙,VBP-15,BGP-15或无治疗。肌球蛋白-II SHG信号强度,纤维直径(FD)以及肌纤维角平行性的参数
由各种细胞组成,骨骼肌是人体组织之一,受伤后具有显着的再生能力。再生过程中的主要参与者之一是肌肉卫星细胞(MUSC),这是一种用于骨骼肌的干细胞种群,因为它是新的肌纤维的来源。保持体内平衡期间的MUSC静止涉及成年骨骼肌中MUSC与其他细胞之间的复杂相互作用。受伤后,将MUSC激活以进入细胞周期以进行细胞增殖并分化为肌管,然后是成熟的肌纤维以再生肌肉。尽管进行了数十年的研究,但MUSC维持和激活的基本机制仍然难以捉摸。分析MUSC的传统方法,包括细胞培养物,动物模型和基因表达分析,为MUSC生物学提供了一些见识,但缺乏复制体内肌肉环境中的3-维(3-D)的能力,并且可以全面捕获动态过程。成像技术的最新进步,包括共焦,重要和多光子显微镜,为观察和表征的动态MUSC形态和行为提供了有希望的途径。本章旨在审查3-D和现场成像方法,这些方法有助于发现对MUSC行为的见解,形态变化,肌肉利基内的相互作用以及在激活(Q-A)过渡期间的内部信号通路。整合先进的成像方式和计算工具为研究骨骼肌再生中复杂的生物学过程和肌肉退行性疾病(例如肌肉减少症和Duchenne肌肉营养不良(DMD))提供了新的途径。
从毛细血管开始,静脉系统开始,其中包括静脉,静脉和静脉腔。毛细血管在静脉中终止,它们是较小的血管(20 µs),其肌肉壁比小动脉的壁更薄。大量的血液持有静脉(称为电容血管),直径为5 mm。静脉形成上腔和下腔静脉,直径约为30毫米。静脉和静脉腔的壁由内皮,弹性组织,光滑的肌肉和外部结缔组织层组成。在静脉和静脉腔中,弹性组织较少,但是平滑肌纤维更多。
线粒体 Ca 2 + 吸收由高度选择性通道线粒体钙单向转运体 (MCU) [1-4] 介导,并响应各种生理刺激而发生,这些刺激通常由内质网释放 Ca 2 + 触发。MCU 复合物的核心成分包括成孔亚基(即 MCU 和必需 MCU 调节器 [EMRE])和调节蛋白(即 MCUb、MCUR1、MICU1、MICU2、MICU3、LETM1 和 SLC25A23)。多项研究已阐明了 MCU 单独和与 EMRE 结合的结构 [4],揭示了与 EMRE 具有 1:1 化学计量的四聚体结构。MCU 复合物成分的遗传变异与多种疾病的发展有关,表明该通道在生物体生理学中发挥重要作用。例如,MCU 过表达与肺癌、胃癌和肝癌的进展有关。此外,MCU 正向调节肌纤维大小,而骨骼肌特异性 MCU 缺失会抑制肌纤维线粒体 Ca 2 + 摄取,导致肌肉力量和运动表现受损。据报道,近端肌病、学习困难和锥体外系运动障碍患者存在调节成分 MICU1 的突变 [5]。此外,MICU1 在 db/db 小鼠心脏中下调,这导致糖尿病患者心肌细胞凋亡。MICU2 的纯合截短突变会导致严重的神经发育障碍,影响近亲患者。此外,MICU2 的沉默最近与胰腺 β 细胞功能受损有关。总之,这些发现令人信服地描绘了 MCU 复合物在维持正常细胞功能方面的生理重要性。考虑到线粒体 Ca 2 +
MF-300 是一种首创的口服 15-羟基前列腺素脱氢酶 (15- PGDH) 酶抑制剂,正在开发中,用于治疗因年龄引起的肌肉无力或肌肉减少症。根据美国食品药品管理局 (FDA) 关于肌肉减少症的以患者为中心的药物开发计划报告,超过 60 岁的美国人中多达三分之一患有肌肉减少症,这会增加他们跌倒、骨折和死亡的风险。目前尚无 FDA 批准的肌肉减少症治疗方法,这种疾病对快肌纤维的影响尤为严重,其特征是肌肉质量和肌肉量下降。
神经肌肉接头 (NMJ) 处的化学突触呈现出一种复杂的结构,其形成取决于两个主要因素的相互诱导:脊髓运动神经元和骨骼肌纤维。这种微妙平衡的破坏是许多神经肌肉疾病的根源,其细胞和分子机制仍有部分未知。这种病理生理学相关性引起了许多研究小组对开发有效研究模型的浓厚兴趣:几十年来,动物模型,尤其是小鼠,一直是神经肌肉疾病建模的黄金标准。[1] 总体而言,动物模型捕捉到了人类疾病的重要特征,因此对于了解器官和生物体规模的疾病进展非常有价值。然而,将这一发现充分应用于人类病理生理学的临床