基于纳米颗粒的药物输送系统有可能彻底改变医学,但其低血管通透性和被吞噬细胞快速清除的特性限制了其在医学上的影响。由于胎儿组织中血管生成和细胞分裂率高以及免疫系统尚未发育完全,在子宫内输送纳米颗粒可以克服这些关键限制。然而,人们对胎儿发育阶段的纳米颗粒药物输送知之甚少。在本报告中,我们使用 Ai9 CRE 报告小鼠证明脂质纳米颗粒 (LNP) mRNA 复合物可以在子宫内输送 mRNA,并且可以进入和转染主要器官,例如心脏、肝脏、肾脏、肺和胃肠道,效率高且毒性低。此外,在出生后 4 周,我们证实横膈膜、心脏和骨骼肌中分别有 50.99 ± 5.05%、36.62 ± 3.42% 和 23.7 ± 3.21% 的肌纤维被转染。最后,我们在此表明,与 LNPs 复合的 Cas9 mRNA 和 sgRNA 能够在子宫内编辑胎儿器官。这些实验证明了在子宫内非病毒递送 mRNA 到肝脏以外的器官的可能性,这为治疗出生前多种毁灭性疾病提供了一种有希望的策略。
针对肩袖节关节病的患者指示了反向总肩关节置换术(RSA),这种疾病以藻毛性关节炎和肩袖袖口不足为特征。RSA假体通过将肱骨头转换为插座,将腺体转化为半球,从而违背了自然的肩关节解剖结构,从而导致内侧旋转中心和延长的肱骨[1,2]。这种设计改变了肩膀的生物力学,增加了三角肌纤维纤维的募集,并最终与肩部强度相比,与常规的总肩关节置换术相比,具有卓越的稳定性和控制性[1]。在恢复过程中,肩袖和支撑肌肉,尤其是三角肌,适应肩膀改变的生物力学,对肌肉活动,功能结果和运动范围产生重大影响[3-5]。肌肉活动或适应性可以通过肌肉测试来评估,使用小针电电极或粘附在皮肤上的表面电极进行评估。表面肌电图(SEMG)最近已被证明是一种有效且无创的工具,用于量化肩部中的个体肌肉激活,并已在临床诊断和康复环境中广泛使用[3,6-9]。
杜氏肌营养不良症 (DMD) 是一种致命的 X 连锁神经肌肉疾病,由肌营养不良蛋白缺失引起,而肌营养不良蛋白对于肌肉纤维完整性至关重要。肌营养不良蛋白缺失会导致肌纤维反复损伤、慢性炎症、进行性纤维化和肌肉干细胞功能障碍。到目前为止,DMD 仍无法治愈,治疗标准主要限于通过糖皮质激素治疗缓解症状。目前的治疗策略可分为两类。肌营养不良蛋白靶向治疗策略旨在恢复肌营养不良蛋白的表达和/或功能,包括基于基因、基于细胞和蛋白质替代疗法。另一类治疗策略旨在通过针对下游病理变化(包括炎症、纤维化和肌肉萎缩)来改善肌肉功能和质量。本综述介绍了这两条策略的重要发展,特别是那些已进入临床阶段和/或具有巨大临床转化潜力的策略。本文介绍了每种药物在临床前或临床研究中的原理和功效。此外,还对 DMD 患者的基因谱进行了荟萃分析,以了解 DMD 的分子机制。
心脏纤维化是各种心脏疾病(例如高血压,冠心病和心肌病)的重要病理表现,它也是心力衰竭的关键联系。先前的研究证实了运动可以增强心脏功能并改善心脏纤维化,但是分子靶标仍然不清楚。在这篇综述中,我们介绍了miR-126在心脏保护中的重要作用,并发现它可以调节TGF-β /SMAD3信号传导途径,抑制心脏纤维细胞转差分,并减少胶原纤维的产生。最近的研究表明,细胞分泌的外泌体可以通过外泌体携带的microRNA通过细胞间通信起特定的作用。心脏内皮祖细胞衍生的外泌体(EPC-EXOS)携带miR-126,运动训练不仅可以增强外泌体的释放,而且可以上调miR-126的表达。因此,通过推导和分析,可以通过上调miR-126在EPC-EXOS中的表达来抑制TGF-β /SMAD3信号传导途径,从而削弱了心脏纤维细胞中的心脏纤维细胞中的肌纤维。本评论总结了通过调节外泌体来改善心脏纤维化的特定练习途径,该外泌体为锻炼提供了新的想法,以促进心血管健康。
细胞治疗肌营养不良症的成功率有限,这主要是由于供体细胞的植入不良,尤其是在疾病晚期阶段的纤维性肌肉。我们开发了一种细胞介导的外显子跳过,该外显子跳过,利用了肌纤维的多核性质,以通过U7小型核RNA进行跳过肿瘤基因的51外显子的外显子,以实现居民的dysentent dys-营养性核的交叉校正。我们观察到,遗传校正的人DMD肌原性细胞(但不是WT细胞)的共同培养,其营养不良的对应物的比例为1:10或1:30,导致肌营养不良蛋白在一个水平上产生的水平比简单稀释预测的高几个水平。这是由于U7 SnRNA扩散到邻近营养不良的居民核。当移植到带有外显子51突变的NSG-MDX-δ51MITE中时,遗传校正的人肌生成细胞在治疗范围内会产生比WT细胞高得多的肌营养不良蛋白的水平,并且即使仅3-5%的急诊量也会导致势能恢复。这种肌营养不良蛋白的水平是迈向细胞疗法临床效率的重要一步。
心力衰竭(HF)心血管死亡和治疗策略的风险层次,阀门置换的最佳时机以及用于植入植入性心脏验证符号的患者选择的患者是基于大多数指南的左心室避孕分数(LVEF)的超声心动图计算。作为收缩功能的标志物,LVEF具有由加载条件和空腔几何形状以及图像质量影响的重要局限性,从而影响了观察者间和观察者内的测量变异性。lvef是缩短心肌膜的三个组成部分的产物:纵向,圆周和倾斜。因此,它是基于空腔体积变化的全球弹出性能的标记,而不是直接反映心肌收缩功能,因此即使肌纤维的收缩功能受损,也可能是正常的。亚心脏的纵向纤维是对缺血的最敏感层,因此,当功能失调时,圆周纤维可能会补偿并保持整体LVEF。同样,在HF患者中,LVEF用于分层亚组,这种方法具有预后的含义,但没有直接关系。HF是一种动态疾病,根据潜在的病理可能会随着时间的流逝而恶化或改善。这种动态性会影响LVEF及其用于指导治疗的使用。介入后LVEF的更改也是如此。在这篇综述中,我们分析了LVEF在广泛的心血管病理中的临床,病理生理和技术局限性。
细胞的命运和身份需要及时激活谱系特异性和伴随抑制替代性linege基因。该过程是如何表观遗传编码的,仍然在很大程度上未知。在骨骼肌干细胞(MUSC)中,肌源性调节因子在肌源性程序的顺序激活中起着关键作用,但是,对于抑制替代谱系基因的抑制如何有助于该程序。在这里,我们报告说,MUSC中的大量非Lineage基因保留了宽松的染色质标记,但被抑制了转录。我们表明,主表观遗传调节剂,阻遏物元件1-沉默转录因子(REST),也称为神经元素限制性沉默因子(NRSF),在抑制这些非肌肉谱系基因和发育调控基因的抑制中起着关键作用。缺乏功能性休息的MUSC表现出改变的表观遗传和转录特征,并且自我更新受损。因此,MUSC通过细胞凋亡逐渐进入细胞死亡,干细胞池经历耗尽。缺乏休息的骨骼肌显示出再生并显示肌纤维萎缩。总体而言,我们的数据表明,REST通过在成年小鼠中抑制多个非肌肉谱系和发育调节的基因来保护肌肉干细胞身份和存活中起关键作用。
肥厚性心肌病(HCM)是一种心脏肌肉疾病,其特征是左心室通常不对称异常肥大,没有异常负荷条件(例如高血压或瓣膜心脏病)[1]。HCM是一种常染色体 - 遗传性心肌病,在30%–60%的病例中鉴定出编码肉瘤蛋白的基因中的突变[1]。这种遗传突变的存在载有超过2倍的心室心律风险。遗传和心肌底物,包括纤维化,心室肥大和微血管缺血,起着心律失常决定因素的作用[1]。心肺运动测试似乎改善了当代SCD风险分层的策略[2-4]。但是,针对HF和心肌病的新药的开发应集中于对心肌细胞,冠状动脉微循环和心肌间质的直接影响。对肾小球和心肌细胞生物学的详细知识至关重要[5]。心肌间质是心肌内的精致和活跃的微疗法[6]。HF纤维化的纤维化变化和毛细血管近的纤维化变化由细胞外基质(ECM)膨胀和I型胶原蛋白的肌纤维细胞分泌[5]。一种心脏磁共振成像技术,T1映射,在人心肌中测量了细胞体积的分数[ECV],可以区分间质(心肌细胞和结缔组织)的不同成分,并具有更精确的心肌纤维化定义[5]。
当心脏有效抽血的能力破坏,导致氧气不足,营养递送到人体组织时,就会发生慢性心力衰竭。心脏纤维化是心肌梗死和高血压等心血管疾病中常见的病理生理过程,是由于活化的心脏纤维细胞(CFS)增加了细胞外基质(ECM)的积累。刺激纤维细胞是由亲弹性信号分子和神经内分泌激活剂和心室壁拉伸引起的,这在心肌梗死后的压力超负荷或损伤等条件下观察到。这些活化的纤维细胞转变为肌纤维细胞,在ECM分泌和心脏纤维化中起着至关重要的作用。TGF-βS是参与调节各种细胞过程的多功能细胞因子,包括炎症,ECM沉积,细胞增殖,分化和生长。TGF-β刺激促进肌细胞分化并增加ECM蛋白质的合成。它还通过增加SMAD2/3的同时减少肌细胞中的抑制性SMAD 6/7,从而激活二邻二旋转基因。SMAD 2/3激活在损伤后的纤维细胞中观察到。TGF-β进一步有助于胶原蛋白I,III和VI沉积,从而增强了心脏中基质蛋白的表达。尽管尝试在ALK1-5受体活性水平上靶向TGF-β3信号传导,但成功受到限制。但是,需要进行其他研究来探索和开发针对TGF-β信号传导途径的疗法,以解决心脏功能障碍和心力衰竭。
引言心脏纤维化与心血管疾病的不良预后有关,是由急性或慢性刺激(例如心肌梗死和高血压)诱导的最重要的病理生理过程之一(1,2)。随着机械刺激,压力/体积超负荷,体液和其他病理因素,心脏成纤维细胞(CFS)增殖并转变为肌纤维细胞,导致细胞外基质(ECM)的分泌过多分泌,降低心脏合规性和心脏合规性和心脏稳定性和心脏重塑(最终)和最终的心脏失败(3)。当前,缺乏有效的CF激活和纤维化临床治疗方法。因此,发现心脏纤维化和阐明机制的关键分子对于心血管治疗具有很高的价值。新兴证据探索了长期的非编码RNA(LNCRNA)作为调节剂和各种心血管疾病的潜在治疗靶标(5-7)。lncRNA是一种非编码RNA类,长度超过200个核苷酸,可以通过蛋白质结合影响染色质结构和转录因子的功能(8)。lncRNA还通过其线性结构与microRNA(miRNA)或mRNA结合,影响mRNA翻译,剪接,降解和其他过程(9)。由于某些固有的困难,例如其保守主义,二级结构效应和细胞型特异性表达谱,只有少数具有与心脏纤维化相关的确定生物学功能的LNCRNA。但是,与心脏纤维化有关的关键LNCRNA仍有待确定。TGF-β信号通路通过调节细胞增殖分化和凋亡(10),在心脏纤维化中起着重要作用(10)。但是,TGF-β信号通路的广泛抑制剂,例如