肺组织具有各种类型的上皮组织干细胞,在组织稳态中起着至关重要的作用,并因吸入化学颗粒以及病毒/细菌感染引起的急性损伤而再生。由于如此重要的作用,组织干细胞的功能障碍与呼吸道疾病有关。在今晚的研讨会上,我将介绍我们目前关于两个肺部干细胞的发现。气道基底细胞和牙槽II型(AT2)细胞。1)基底细胞通过从缓慢的循环转变为增殖,然后又回到缓慢的循环中,从而导致成人组织再生。尽管持续增殖会导致肿瘤发生,但调节这些转变的分子机制仍然未知。使用发育中的鼠气祖细胞的时间单细胞转录组学,我们发现TGF-β-ID2轴通常调节发育和再生过程中基础细胞中基础细胞中的增殖转变,并且其微调对正常再生至关重要,同时避免基础细胞增生。2)肺泡是肺纤维化起源的主要根源,已广泛研究了分子病因。调节肺泡上皮细胞纤维化状态的机制仍然难以捉摸。为了阐明上皮损伤和肌纤维细胞分化之间的因果关系,我们使用AT2干细胞培养建立了一个基于器官的肺纤维化模型。我们发现核心细胞系统在肺纤维发生中起着核心作用。该模型系统可用于研究较少炎症的肺纤维化的初始诱导,包括特发性肺纤维化。
摘要:Duchenne肌肉营养不良(DMD)是当前无法治愈的X连锁神经肌肉疾病,其特征是进行性肌肉浪费和早亡,通常是由于心脏衰竭而导致的。肌营养不良蛋白基因中引起DMD的突变是高度多样的,这意味着,可以普遍适用的治疗所有患者的疗法的发展非常具有挑战性。DMD的领先治疗策略是反义寡核苷酸介导的剪接调节,从而将一个或多个特定的外显子排除在成熟的肌营养不良蛋白mRNA之外,以纠正翻译阅读框。的确,三个外显子跳过寡核苷酸已获得FDA批准用于DMD患者。第二代外显子跳过药物(即肽 - 抗乙二理I寡核苷酸共轭物)表现出增强的效力,并且在心脏中诱导肌营养不良蛋白的恢复。同样,针对各种外显子的多种其他反义寡核苷酸药物正在临床发育中,以治疗更大比例的DMD患者突变。在基因组工程领域的相对最新进展(具体而言,CRISPR/CAS系统的发展)为DMD的RNA指导遗传校正提供了多种有希望的治疗方法或基础编辑技术。肾脏毒性,病毒载体免疫原性和脱靶基因编辑)以及高成本的治疗成本。对剪接调制和基因编辑方法的临床翻译的潜在局限性,包括药物输送,均匀肌营养不良蛋白表达在校正的肌纤维中的重要性,安全问题(例如
输送液体流动的自然结构表现出流动介导力和长期适应之间的相互作用。这种现象与心血管系统有关,其中心腔的几何重塑是导致心力衰竭的病理进展的主要机制。这里分析了心脏中只有一个右心室 (SRV) 的儿童的心脏适应性。在这些患者中,左心室 (LV) 发育不良,健康的右心室 (RV) 在出生后早期通过手术重新连接,以承担系统心室的功能作用。这种情况代表了一种研究心脏适应性的特殊模型,本研究利用了不常见的数据集(64 个正常 RV、64 个正常 LV、64 个具有临床正常功能的 SRV)。从流体动力学和组织变形的角度分析心室功能性能,目的是验证 SRV 配置从原始 RV 适应到向 LV 功能发展的程度。结果表明,由于工作压力较高,SRV 的体积立即增大,几何形状也更宽。然而,流体动力学湍流较弱,推进力减小。周围组织出现肌肉增厚,肌纤维多向取向,模仿 LV。然而,流动性能降低和结构一致性较低使 SRV 面临更高的进行性功能障碍适应风险。这项研究表明了心脏流量和组织反应之间的相互作用如何代表导致心力衰竭发展的宏观驱动因素。更一般地说,联合评估流体动力学和结构功能特性可能是探索不同时间尺度上的适应过程的必要条件。
方法和结果:从DCM的小儿患者中建立了四种原发性培养的CF细胞系,并与健康对照组的3个CF线相比。与健康CFS相比,DCM CFS之间的细胞增殖,粘附,迁移,AP-Optosis或肌纤维细胞激活没有显着差异。原子力显微镜表明,DCM CFS中的细胞刚度,流动性和粘度没有显着改变。但是,当DCM CFS与健康的心肌细胞共培养时,它们会恶化心肌细胞的收缩和舒张功能。与健康CFS相比,DCM CFS中 RNA测序在DCM CFS中明显不同。 在DCM CFS中,几个道德因素和细胞外基质显着上调或下调。 途径分析表明,在DCM CFS中,细胞外基质受体相互作用,局灶性信号传导,河马信号传导和转化生长因子-β信号通路受到显着影响。 相比之下,单细胞RNA测序表明,在DCM CFS中没有特定的亚群有助于基因表达的改变。RNA测序在DCM CFS中明显不同。在DCM CFS中,几个道德因素和细胞外基质显着上调或下调。途径分析表明,在DCM CFS中,细胞外基质受体相互作用,局灶性信号传导,河马信号传导和转化生长因子-β信号通路受到显着影响。相比之下,单细胞RNA测序表明,在DCM CFS中没有特定的亚群有助于基因表达的改变。
jakafi®(ruxolitinib)是一种激酶抑制剂,该激酶抑制剂可用于治疗中间或高危骨髓纤维化的患者,包括原发性骨髓纤维化(PMF),多余的骨髓病后脊髓脑纤维纤维化和后骨骼肌纤维纤维纤维纤维纤维化。也指出,在对羟基脲反应不足或不耐受反应或不耐受的患者中。还可以指出,在成人和儿科患者中,在12岁及以上的成人和儿科患者中,治疗类固醇难治性的急性急性移植物抗宿主病和慢性移植物抗宿主病。国家癌症综合网络(NCCN)还建议Jakafi治疗多余血管,必不可少的血小板细胞症,加速/爆炸期骨髓增生性肿瘤,淋巴样,髓样/淋巴样肿瘤,用嗜酸性症和Jak22的重新植物,肌动症,肌动症孔疗法。白血病,T细胞淋巴瘤以及与CAR-T细胞和免疫疗法有关的毒性的管理。覆盖范围信息:将要求成员满足以下标准以进行覆盖。对于19岁以下的成员,处方将自动处理而无需覆盖审查。某些州要求在某些诊断或在某些情况下使用药物的非标签使用福利覆盖范围。一些州还要求使用其他汇编参考。在适用此类授权的情况下,它们在福利文件或通知标准中取代语言。2。覆盖标准A:
重组腺相关病毒 (rAAV) 平台有望用于体内基因治疗,但抗原呈递细胞 (APC) 的不良转导会削弱其应用前景,而抗原呈递细胞又会引发宿主对 rAAV 表达的转基因产物的免疫。鉴于最近接受高剂量全身 AAV 载体治疗的患者出现的不良事件,推测这些不良事件与宿主的免疫反应有关,开发抑制先天性和适应性免疫的策略势在必行。使用 miRNA 结合位点 (miR-BS) 来赋予内源性 miRNA 介导的调控,使转基因表达脱离 APC,有望降低转基因免疫力。研究表明,将 miR-142BSs 设计到 rAAV1 载体中能够抑制树突状细胞 (DC) 中的共刺激信号、减弱细胞毒性 T 细胞反应并减弱小鼠转导肌细胞的清除,从而允许在肌纤维中持续转基因表达,同时几乎不产生抗转基因 IgG。在本研究中,我们针对 26 种在 APC 中大量表达但在骨骼肌中不表达的 miRNA 筛选了单个和组合 miR-BS 设计。高免疫原性卵清蛋白 (OVA) 转基因被用作外来抗原的替代物。在成肌细胞、小鼠 DC 和巨噬细胞中进行的体外筛选表明,miR-142BS 和 miR-652-5pBS 的组合强烈抑制了 APC 中的转基因表达,但保持了成肌细胞和肌细胞的高表达。重要的是,携带这种新型 miR-142/652-5pBS 盒的 rAAV1 载体在小鼠肌肉注射后比以前的去靶向设计实现了更高的转基因水平。该盒强烈抑制细胞毒性 CTL 激活和
运动过程中,长远端肌腱(如跟腱)储存和释放的弹性应变能量可增强肌肉力量并降低运动能量消耗:由于远端肌腱在回弹过程中进行机械工作,跖屈肌纤维可以在较小的长度范围内、较慢的缩短速度和较低的激活水平下工作。很少有证据表明人类进化出长远端肌腱(或保留自我们更远的人科祖先)主要是为了实现较高的肌肉 - 肌腱功率输出,事实上,与许多其他物种相比,我们的力量仍然相对较弱。相反,大多数证据表明,这种肌腱的进化是为了降低总运动能量消耗。然而,长肌腱还有许多其他优势,通常未被认识到,据推测可能具有更大的进化优势,包括由于肌肉更短更轻而减少肢体惯性(减少近端肌肉力量需求),减少足部与地面碰撞时的能量耗散,能够储存和重复使用肌肉所做的工作以减弱足部与地面碰撞引起的振动,减少肌肉产热(从而降低核心温度),以及减轻工作引起的肌肉损伤。 总的来说,这些影响应该可以减少神经运动疲劳和运动用力感,使人类可以选择以更快的速度移动更长时间。 由于这些好处在更快的运动速度下更大,因此它们与以下假设一致:我们的祖先使用的跑步步态可能对跟腱长度产生了巨大的进化压力。因此,长跟腱可能是一种独特的适应性,它提供了许多生理、生物力学和心理方面的好处,从而影响了多种任务中的行为,包括运动和运动之外的行为。虽然能量成本可能是运动研究中感兴趣的变量,但未来的研究应该考虑影响我们运动能力的更广泛的因素,包括我们决定以特定速度移动给定距离,以便更充分地了解跟腱功能的影响以及该功能在身体活动、不活动、废用和疾病对运动表现的影响。
摘要胰腺癌的肿瘤微环境(TME)是高度免疫抑制的。我们最近开发了一种转化的生长因子(TGF)β的免疫调节疫苗,该疫苗通过靶向TME中的免疫抑制和脱发,在胰腺癌的鼠模型中控制肿瘤的生长。我们发现,用TGFβ疫苗的治疗不仅降低了肿瘤中M2样肿瘤相关的巨噬细胞(TAM)和与癌症相关的成纤维细胞(CAF)的百分比,而且还降低了偏振CAF的偏光CAF,而且远离肌纤维纤维细胞样的表型。然而,TGFβ疫苗在TAM和CAF表型上的免疫调节特性是否是TGFβ特异性T细胞对这些亚群的识别和随后靶向的直接结果,还是TME内诱导的整体调节的间接结果。通过ELISPOT和流式细胞仪评估TGFβ特异性T细胞对M2巨噬细胞和成纤维细胞的识别。通过用肿瘤条件的培养基培养M2巨噬细胞或成纤维细胞,评估了TGFβ疫苗对这些细胞子集的间接和直接影响,或分别用从用TGFβ疫苗或对照疫苗的小鼠脾脏中分离出的T细胞。通过流式细胞仪和生物质量多重系统(Luminex)评估表型的变化。我们发现由TGFβ疫苗诱导的TGFβ特异性T细胞可以识别M2巨噬细胞和成纤维细胞。TAMS倾向于具有促进肿瘤功能,具有免疫抑制表型,并且与胰腺癌具有M2样表型时的总体生存率降低有关。此外,我们证明了M2巨噬细胞和CAF的表型可以由TGFβ特异性T细胞直接调节TGFβ疫苗诱导的TGFβ特异性T细胞,以及由于TME内疫苗的免疫 - 调节作用而间接调节。此外,肌成纤维细胞类似CAF会产生僵硬的细胞外基质,从而限制T细胞浸润,阻碍免疫疗法在去肿瘤肿瘤中的有效性,例如胰腺导管腺癌。通过用TGFβ的TAM和CAF靶向基于TGFβ的免疫调节疫苗,可以减少胰腺肿瘤中的免疫抑制和免疫排除。
肌营养不良症 (MD) 是一组罕见的遗传性疾病,会导致骨骼肌逐渐无力,并出现营养不良病理表型。它们分为九种主要类型:肌强直、杜兴氏、贝克尔、肢带、面肩肱型、先天性、眼咽型、远端型和埃默里-德雷富斯型 (Mercuri 等人,2019)。其中,成年人最常见的形式是肌强直性营养不良症 (DM),每 3000 人中就有 1 人受到影响,是由 DMPK(DM1:# 160900)或 CNBP(DM2:# 602668)基因座突变引起的(Mateos-Aierdi 等人,2015)。另一方面,儿童期最常见、最严重的遗传性营养不良症是杜氏肌营养不良症 (DMD,ONIM:#310200),每 5000 名新生男婴中就有 1 名患有此病 (Mendell 等人,2012 年),其原因是肌营养不良蛋白基因突变导致蛋白质完全缺失 (Ervasti & Sonnemann,2008 年;Hoffman 等人,1987 年)。总体而言,MD 涉及 40 多个基因的突变,这些基因导致不同的发病分子机制(详见 (Mercuri et al., 2019))。除了 MD 之外,在其他病理生理情况下也会观察到肌肉功能缺陷,例如大面积创伤、癌症或肌肉废用导致的萎缩(即身体固定后)(Sartori et al., 2021),或与年龄相关的肌肉质量损失、肌肉减少症(Muñoz-C anoves et al., 2020),这给不同的国家卫生系统带来了沉重的负担。因此,旨在改善生理和病理情况下的肌肉功能的策略和干预措施仍然是科学和医学界面临的关键挑战。在这种背景下,纳米医学提供了大量前所未有的工具,可以彻底改变我们看待骨骼肌疾病再生医学的方式。一方面,组织再生纳米医学利用纳米尺度材料作为药物输送系统 (DDS),利用细胞水平的内源性运输在纳米长度尺度上主动驱动这一事实 (Pozzi et al., 2014)。纳米粒子 (NPs) 的高表面体积比有利于生长因子 (Z. Wang, Wang, et al., 2017)、寡核苷酸 (Roberts et al., 2020)、细胞因子 (Raimondo & Mooney, 2018) 和其他生物活性剂的负载,以促进组织再生,而丰富的表面化学性质允许用靶向配体修饰 NPs,以确保更精确的输送。通过保护其有效载荷免于降解,NPs 可提高其药代动力学和生物利用度 (Fathi-Achachelouei et al., 2019)。就材料组成而言,有机纳米颗粒(即脂质体、聚合物、固体脂质纳米颗粒)具有悠久而成功的临床应用历史,可以保证良好的生物相容性和生物降解性(Colapicchioni,2020 年)。而无机纳米颗粒(即金属、氧化物、碳基、二氧化硅等)则表现出更高的化学稳定性,更容易合成和功能化,并且对内部(pH、温度、氧化还原电位)和外部(光、超声波和磁场)刺激具有良好的响应性(Mclaughlin 等人,2016 年)。此外,这些 NP 的独特光学特性(荧光、等离子体吸光度等)允许它们作为成像剂使用,因为它们允许在纳米图案支架或 DDS 内进行卓越的时空控制。然而,尽管具有这些吸引人的特性,无机 NP 在临床转化方面还不够成熟,而且它们的潜在毒性是一个值得关注的重要问题(Yang 等人,2019 年)。纳米医学彻底改变了骨骼肌再生的第二个领域是生物工程方法。骨骼肌再生研究的很大一部分集中在合成仿生支架以供细胞附着和生长以维持组织重建。纳米级材料的主要优势之一是可以优化这些支架的物理和生物特性,从而实现高度定制的平台。不同的纳米材料被用于优化支架的物理特性(即机械强度、电导性)并提供可控的生物活性剂释放。在这种情况下,纳米纤维支架通过改善系统架构提供拓扑支持以引导肌纤维分化和排列。另一方面,导电支架利用骨骼肌组织的内在兴奋性来调节肌肉细胞的存活、增殖和分化特性(Langridge 等人,2021 年)。本综述概述了纳米材料在肌肉疾病中的应用,重点介绍它们在组织工程方法和作为 DDS 的应用,并探索某些无机 NP 作为免疫调节剂的内在潜力(图 1)。本研究还将讨论该领域的未来前景以及限制这些纳米系统从实验室到临床的有效转化的困难。骨骼肌再生研究的很大一部分集中在合成仿生支架上,用于细胞附着和生长以维持组织重建。纳米级材料的主要优势之一是可以优化这些支架的物理和生物特性,从而实现高度定制的平台。不同的纳米材料被用来优化支架的物理特性(即机械强度、电导性)并提供受控的生物活性剂释放。在这种情况下,纳米纤维支架通过改善系统架构提供拓扑支持以引导肌纤维分化和排列。另一方面,导电支架利用骨骼肌组织的内在兴奋性来调节肌细胞的存活、增殖和分化特性(Langridge 等人,2021 年)。本综述概述了纳米材料在肌肉疾病中的应用,重点介绍了它们在组织工程方法和 DDS 中的应用,并探索了一些无机 NP 作为免疫调节剂的内在潜力(图 1)。本研究还将讨论该领域的未来前景以及限制这些纳米系统从实验室到临床的有效转化的困难。骨骼肌再生研究的很大一部分集中在合成仿生支架上,用于细胞附着和生长以维持组织重建。纳米级材料的主要优势之一是可以优化这些支架的物理和生物特性,从而实现高度定制的平台。不同的纳米材料被用来优化支架的物理特性(即机械强度、电导性)并提供受控的生物活性剂释放。在这种情况下,纳米纤维支架通过改善系统架构提供拓扑支持以引导肌纤维分化和排列。另一方面,导电支架利用骨骼肌组织的内在兴奋性来调节肌细胞的存活、增殖和分化特性(Langridge 等人,2021 年)。本综述概述了纳米材料在肌肉疾病中的应用,重点介绍了它们在组织工程方法和 DDS 中的应用,并探索了一些无机 NP 作为免疫调节剂的内在潜力(图 1)。本研究还将讨论该领域的未来前景以及限制这些纳米系统从实验室到临床的有效转化的困难。
UE5组织学课程学院医学课程里昂是埃里克·皮亚顿大学(Eric Piaton University),第2021 - 22年第四部分:胚胎和成年人的普通浓缩细胞在胚胎和胎儿期间或成人时期或胎儿期间非常广泛的织物。形容词“常见”不是科学的:它汇集了异质的细胞家族,其中我们发现怯ward或纤维的结缔组织和脂肪组织。间充质和间质间充质间充质细胞(幻灯片33)是能够自我更新的干细胞(干细胞),导致许多成年的结缔组织细胞:成纤维细胞/纤维细胞,纤维细胞,骨细胞和骨软骨细胞,骨软骨细胞和骨质 - 骨质和脑核酸粒细胞和辣椒粒细胞脂肪细胞,肌肉细胞...间充质细胞也是造血干细胞的来源(CSH,在未来血液线的起源)。CSH(给出所有血液线)源自间充质细胞而无需穿越成纤维细胞的阶段,而非血管结缔组织(软骨,骨骼,肌肉等)经过成纤维细胞的阶段。间充质细胞是小星,嗜碱性细胞,相互通过间隙型连接相互关联。他们的核很大,核仁很大。它们具有较高的有丝分裂潜力。它们存在于一种称为间充质的胚胎织物中,其中人丰富,许多细胞和下面的血管。在间充质中是流体的家伙,水合丰富,可以扩散小分子(气体,离子,氨基酸,生长因子等)。间质和构成其组成的大分子被逐渐破坏或取代了胶原纤维积聚并形成循环网络的更成熟的组织形式。在成年人中,间充质已经消失,但是存在于体内的残留细胞,它们保持增殖和分化潜力。可以在某些条件下提取它们,并用作细胞治疗测试中的多层干细胞。它们也可能是攻击性恶性肿瘤(恶性间充质)的原因。成纤维细胞和纤维细胞成纤维细胞和纤维细胞是同一细胞的两种不同形式(它们可以从一个状态传递到另一个状态)。这些可能是人类有机体中最多的细胞。成纤维细胞会生出许多细胞类型,例如骨细胞,软骨细胞,肌肉细胞,肌纤维细胞,脂肪细胞。这些是在人类细胞中最容易培养的(幻灯片35),这解释了它们是细胞生物学中非常先进的基本研究的主题。