文章历史记录:24-511收到:28-May-28修订:接受:03-JUL-24接受:06-JUL-24在线首次:14-JUL-24摘要该论文提出了表明牛在Kazakhstan Kostanay地区的牛sarcococystosis的结果。检查了来自358个牛尸体的肌肉样本的肌肉样本。来自东部区域的公牛的颈部肌肉,西部地区的奶牛中的骨骼和隔膜肌肉受到严重感染。感染最少的是北部地区公牛的颈部肌肉和南部地区的骨骼肌肉。感染的程度等于研究牲畜的77.4%。基于分子遗传分析和细胞色素 - 氧化酶(COX1)序列的比较,在科斯塔尼地区首次鉴定出三种类型的牛肉眼:S。Cruzi,S。S. bovifelis和S. dehongensis。这项研究强调了Kostanay地区肌细胞增多症的显着流行,这表明Cox1基因测序在鉴定不同的肌囊肿物种中的实用性。这些发现强调了改善控制和预防策略的需求,以减轻对牛健康和生产力的影响。关键词:牛,肌肉细胞,肌肉样本,患病率,分子遗传分析
神经血管单元 (NVU) 是一种复杂的多细胞结构,由内皮细胞 (EC)、神经元、神经胶质细胞、平滑肌细胞 (SMC) 和周细胞组成。每个组成部分都紧密相连,形成结构和功能单元,调节中枢神经系统 (CNS) 血流和能量代谢,并形成血脑屏障 (BBB) 和内血视网膜屏障 (BRB)。顾名思义,NVU 的“神经”和“血管”组成部分是众所周知的,神经血管耦合是 NVU 的关键功能。然而,NVU 由多种细胞类型组成,其功能超出了由此产生的神经血管耦合,具有信号传导、代谢和体内平衡的跨组成部分联系。在 NVU 中,神经胶质细胞越来越受到关注,而且越来越明显的是,它们在 NVU 中发挥着各种多层次的功能。研究表明,神经胶质细胞功能障碍先于神经元和血管病变出现,这表明神经胶质细胞在 NVU 功能和疾病发病机制中发挥着核心作用。在这篇综述中,我们以“神经胶质细胞为中心”的观点看待 NVU 在视网膜和大脑中的发育和功能,以及这些在疾病中如何变化,以及先进的实验技术将如何帮助我们解决未解问题。
摘要:骨骼肌是一种高度可塑的组织,在急性和阻力运动中表现出显著的适应能力,并改变其组成以适应使用和废用,这一过程称为肌肉可塑性。热休克蛋白 (HSP) 是一类进化保守的分子伴侣,与骨骼肌可塑性的调节有关。在这里,我们总结了支持以下观点的关键发现:HSP 是维持骨骼肌完整性和功能性所必需的重要成分。HSP 参与肌生成所需的转录程序,并在肌肉运动和损伤后被激活。它们的功能障碍(无论是由于表达不当还是基因突变导致)都会导致肌肉萎缩并导致肌病和周围运动神经病的发展。在运动神经病中观察到神经支配/神经支配和反复的神经退化/再生,这表明 HSP 表达和功能失衡可能会损害神经肌肉接头的修复。增强 HSP 活性可能有助于通过促进肌肉分化和帮助修复 NMJ 来防止肌肉萎缩。增强 HSP 功能还可能有助于对抗横纹肌肉瘤 (RMS) 的发展,这是一种高度侵袭性的儿童软组织肉瘤,其细胞具有骨骼肌特征,但无法完全分化为骨骼肌细胞。
•双特异性抗体是一组新的治疗疗法,该疗法正在用于骨髓瘤中•开发了几种双特异性抗体,用于治疗骨髓瘤•双特异性抗体附着于骨髓瘤细胞和细胞与免疫系统中的细胞中,称为T细胞中,称为T细胞,称为T细胞,称为T细胞•双ibibibies•双皮抗体与TIP细胞接触骨髓瘤,使其接触肌细胞。然后使T细胞保持活跃,并能够杀死骨髓瘤细胞•双特异性抗体在许多临床试验中显示出抗肌瘤作用,在许多临床试验中,患有复发和/或难治性骨髓瘤的患者,进一步的临床试验进行了进一步的临床试验,并且在迄今为止进行了副作用•迄今为止,与血流的副作用有关,包括血流量,造成的流血,疾病,疾病,疾病,疾病,疾病,疾病,疾病,疾病,疾病,疾病,疾病,疾病,疾病,疾病,疾病,疾病,疾病,疾病,疾病,疾病,疾病,疾病,疾病,疾病,疾病,疾病,疾病,疾病,疾病,疾病,疾病,无处不在。症状,胃肠道症状,口味改变以及皮肤或指甲的变化
大多数Duchenne肌肉营养不良(DMD)病例是由一个或多个外显子的删除或重复引起的,这些外显子破坏了DMD mRNA的阅读框架。恢复阅读框允许产生部分功能性肌营养不良蛋白,并导致症状不太严重。反义寡核苷酸介导的外显子跳过已被批准用于DMD,但是该策略需要重复治疗。crispr/cas9还可以恢复室内读取框架。尽管最近的体内研究表明单切换/外显子跳过策略的功效,但缺乏找到特定突变的最有效的单切SGRNA的方法。在这里,我们表明插入/删除(Indel)产生效率和Indel曲线都有助于读取框架恢复单切SGRNA的效率,因此只检查Indel频率的测定无法找到最佳的SGRNA。因此,我们开发了一种GFP重复蛋白测定法,以评估单切性效率,并报告了这两个方面的综合效应。我们表明,GFP-Reporter分析可以可靠地预测肌细胞中SGRNA的性能。此GFP-报告基因测定法可以有效,可靠地找到最有效的单切SGRNA来恢复肌营养不良蛋白的表达。
出生对心肌细胞提出了代谢挑战,因为它们将燃料偏好从葡萄糖重塑为脂肪酸,以产生产后产生1,2。这种适应性部分是由产后环境变化触发的3,但是编排心肌细胞成熟的分子仍然未知。在这里我们表明,这种过渡是由母体提供的γ-亚麻酸(GLA)协调的,富含母牛奶中的18:3 omega-6脂肪酸。GLA结合并激活类维生素X受体4(RXR),配体调节的转录因子,这些转录因子在胚胎阶段在心肌细胞中表达。多方面的全基因组分析表明,胚胎心肌细胞中缺乏RXR引起异常的染色质景观,从而阻止了控制RXR依赖性基因表达的诱导,从而控制了线粒体脂肪酸稳态。随之而来的有缺陷的代谢过渡具有钝性的线粒体脂质衍生的能量产生和增强的葡萄糖消耗,从而导致心脏心脏功能障碍和死亡。最后,GLA补充诱导了在体外和体内心肌细胞中线粒体脂肪酸稳态的RXR依赖性表达。因此,我们的研究将GLA -RXR轴确定为围产期心脏代谢的母体控制的关键转录调节机制。
斑马鱼胰腺的特征,与胰岛功能和建模斑马鱼的糖尿病相关的特征已成为了解器官发育和组织再生的强大模型。它也已被广泛应用于糖尿病研究和化学生物学领域。像哺乳动物胰腺一样,斑马鱼胰腺主要由外分泌和内分泌细胞组成[1]。在外分泌胰腺中,导管细胞逐渐形成腔内结构,以促进由腺泡细胞分泌的消化酶的转运,从而向肠道分泌。内分泌细胞聚集在一起,并构造了名为胰岛的细腻组织结构。Within the islets, there are several endocrine cell types, including insulin-secreting β -cells, glucagon-secreting α -cells, somatostatin-secreting δ -cells, ghrelin-secreting ε -cells, and in zebra fi sh also glucose-dependent insulinotropic polypeptide (GIP)-secreting cells.此外,斑马鱼胰腺是一种高度血管化器官,具有大量的血管内部细胞,平滑肌细胞和周细胞[2,3]。胰岛脉管系统对于维持全身葡萄糖稳态至关重要,因为它使胰岛细胞能够感知血糖水平。因此,它参与调节胰岛细胞的旁分泌/自分泌作用,并在调节胰岛素和胰高血糖素分泌的平衡。
值为 33.8%,这是由于射血分数阈值小于 30% (17)。另一项研究使用了来自 126,526 名患者的 12 导联心电图数据来开发 CNN,以识别仍处于窦性心律的心房颤动患者。当分析每个患者的多张心电图时,该算法能够识别心房颤动,AUC 为 0.90,灵敏度为 82.3%,特异性为 83.4% (18)。假设结构性心脏变化(例如肌细胞肥大、纤维化和扩张)通常先于心房颤动,而 CNN 能够在心电图中识别的正是这些结构性变化。然而,这项研究并非没有局限性;该神经网络是通过对心房颤动发病率较高的人群进行回顾性分类来训练的,因此可能存在过度拟合的风险,而没有心房颤动的患者组可能有未被发现的心房颤动,因此这些患者可能被错误标记,影响算法的准确性。尽管如此,该研究确实强调,可以使用一种低成本、可访问且非侵入性的测试来筛查可能患有心房颤动的患者,作为预防和诊断工具(18)。进一步的研究探索了从常规心电图检测结构性心脏变化的概念,包括使用人工智能检测左心室肥大
摘要:这项研究调查了上升主动脉置换的第一个模型的六个月结果。用于生产生物管的模具皮下植入了山羊。2-3个月后,寄生了模具以获得生物管(内径,12毫米;壁厚,1.5 mm)。接下来,我们在五只同种异体山羊中使用生物管进行了升高主动脉替代。在6个月时,动物进行了计算机断层扫描(CT)和组织学评估。作为比较,我们使用戊二醛固定自体心包卷或猪衍生的异质生物管进行了类似的手术。在6个月时,CT显示生物管或假疗法形成没有动脉肿瘤。组织学评估显示内皮细胞,平滑肌细胞和沿生物管的弹性纤维的发展。在自体心包组中,没有新的细胞发育的证据,但是有钙化。在异源生物管组中观察到的组织学变化与同种异体生物管组中的组织学变化相似。但是,某些异源生物管中存在炎症细胞浸润。基于上述内容,我们可以成功创建世界上第一个基于生物管的升主替代模型。目前的结果表明,生物管可能是主动脉组织再生的支架。
纤维化包括:(1) 反应性纤维化,即过量胶原蛋白在 ECM 中逐渐呈可逆性弥漫分布,如非缺血性心肌病(图 1a)、心脏瓣膜病和正常衰老中所观察到的 [ 4 ];(3) 浸润性纤维化,由于非胶原蛋白等物质(如淀粉样蛋白(心脏淀粉样变性)、铁(血色素沉着症)或糖鞘脂(法布里病,图 1b)[5 ] )的积聚(在 ECM 或肌细胞中)而继发。许多介质已成为抗纤维化疗法的潜在靶点,但大多数确定其益处的研究都是基于动物模型,而人体研究的结果好坏参半。近年来,我们对心脏纤维化机制的理解有了很大的提高,这使我们能够改进非侵入性成像技术,以更好地跟踪其发展,而 CMR 正处于这些创新的前沿 [ 6 ]。本综述解释了心肌纤维化是如何发展的,以及如何使用 CMR 成像对其进行非侵入性检测和测量。我们总结了一些更有前景的靶向抗纤维化疗法的选定动物和人体试验的结果,并重新审视了 CMR 在这些试验中未来的潜在作用。本综述基于之前进行的研究,不包含任何作者对人类参与者或动物进行的研究。