二维半金属在磁性纳米器件中展现出巨大的潜力。然而,二维半金属的发现仍然基于逐案评估。本文,我们提出了设计具有大自旋间隙的二维过渡金属基半金属的一般规则,即找到具有洪特规则分裂的 d 轨道和深阴离子 p 轨道能级以使 dp 相互作用最小化的材料。基于对具有扭曲四面体晶场的 54 种过渡金属化合物 MX 2(M = 3 d 区过渡金属;X = VIA-VIIA 元素)的 DFT 计算,我们发现所有铁磁化合物都表现出半金属性。我们将半金属性归因于具有弱 dp 轨道杂化的 M 阳离子的部分填充 d 轨道的洪特规则分裂。由于 Cl p 轨道能级较深(− 8.4 eV),氯化物表现出大于 4 eV 的自旋间隙。我们在过渡金属三氯化物 M Cl 3(M = 3 d 区过渡金属)中验证了这一规则。利用这一规则,我们预测铁磁单层 M Cl 和 M 3 Cl 8(M = 3 d 区过渡金属)是具有大带隙的半金属。这项工作丰富了二维半金属的种类,并可能带来新型磁性纳米器件。
在本次演讲中,我们将介绍 arXiv:2201.03358 的主要结果。我们提供了分析和数值证据,表明通用 Ising 自旋模型上的单层量子近似优化算法 (QAOA) 会产生具有高斯扰动的热态。我们发现,根据最先进的技术,这些伪玻尔兹曼态无法在经典计算机上有效模拟,我们将这种分布与 QAOA 的优化潜力联系起来。此外,我们观察到温度取决于状态能量与其他能级协方差以及状态与这些能量的汉明距离之间的隐藏的通用相关性。
更多详细信息:排名最高的研究中心/大学和大型科技公司的讲师(例如,Intel,NVIDIA,IBM)将涵盖以下主题:符号回归,用于时间序列数据分析的高斯过程,传输学习和域适应性,图形神经网络和变压器用于多模式分析,AI解释性,解释性,神经性计算,能型计算,能级能力性DL训练。每个主题都将由必要的工具补充,以创建有效,可扩展和便携式ML管道,以利用现代HPC基础架构的功能。
气体中辐射的吸收和发射本质上是量子力学过程。分子中离散能级的存在是原子尺度系统量子特性的体现。基态是唯一的稳定状态,而任何激发态分子即使不受干扰,一段时间后也会通过跃迁到基态或其他较低状态来降低其内部能量。激发态的一般瞬态特性与状态能量的不确定性有关,如海森堡不确定性关系所示。因此,在两个确定的量子态之间跃迁期间发射的光子的能量也是不确定的,跃迁能量统计分布在与这两个状态相关的中心能量周围。
最近提出的 2 + 1 维非阿贝尔玻色子-费米子对偶在道义上将 U ( k ) N 与 SU ( N ) − k 陈-西蒙斯物质理论联系起来,为探索从阿贝尔复合粒子理论可获得的非阿贝尔量子霍尔态前景提供了一个新平台。在这里,我们重点研究将玻色子或费米子的阿贝尔量子霍尔态理论与部分填充朗道能级的非阿贝尔“复合费米子”理论联系起来的对偶。我们表明,这些对偶预测了特殊的填充分数,其中阿贝尔和非阿贝尔复合费米子理论似乎都能够承载不同的拓扑有序基态,一个是阿贝尔态,另一个是非阿贝尔态,即 U ( k ) 2 Blok-Wen 态。我们认为,这些结果并不与对偶性相冲突,而是表明了意想不到的动力学,其中红外和最低朗道能级极限无法跨对偶性交换。在这种情况下,非阿贝尔拓扑序可能会不稳定,有利于阿贝尔基态,这表明阿贝尔态和非阿贝尔态之间存在相变,该相变很可能是一级相变。我们还将这些构造推广到其他非阿贝尔费米子-费米子对偶性,在此过程中利用对偶性获得了各种成对复合费米子相的新推导,包括反普法夫态。最后,我们描述了在多层结构中,跨 N 层的复合费米子的激子配对如何也能生成具有 U (k)2 拓扑序的 Blok-Wen 态家族。
尽管取得了显着的进展,但关于MHP的光扣材料和设备属性的典型问题尚未得到充分解决。[13]一个重要的问题是这项工作的中心,它是费米水平(E F)位置在MHP的能量差距中的强烈变化,名义上未含量的MHP据报道表现出从N型到P型的行为。[14–20],例如,Schulz等。表明,仅通过将基板从TIO 2变为NiO X,可以将三碘铅中的E F(MAPBI 3)移动多达0.7 eV。[17]在Concontast,Zohar等。发现,基于单乙烯的钙钛矿(例如Mapbbr 3和Cspbbr 3)表现出与底物无关的常数E F位置。[18]此外,OLTHOF报告了MHP E F位置与底物工作功能之间的关系,以表现出相当大的散射,超过1 eV。[21]这种相互矛盾的观察结果已暂时归因于薄膜化学计量,样品制备条件和方法以及样品处理的历史(例如,空气暴露)的差异。[22]例如,已经表明,样本工作功能可以受到化学计量组合的强烈影响。[20,21]此外,根据表面状态的存在,表面带弯曲可以进一步使MHP能级的相互作用与底物的关系复杂化。[23]最后,源自样本制备和/或处理的不同环境条件已显示出不一致的行为。[24–32]因此,急需对钙钛矿/底物界面的能级比对机理进行彻底的和系统研究。
关于广泛接受的BCS超导理论的挑战可能是由于对自由移动电子和金属键的海洋的误解。根据这些概念,电阻大概是由电子振动和碰撞引起的。隐含地假设该模型,BCS理论表明,库珀对耦合电子可以最大程度地减少振动和电阻。但是,这提出了一个问题:如果离域电子负责将金属分子固定在一起,那么当电子在电流中移动时,金属结构如何保持稳定?放弃了这些传统模型,一种替代理论介绍了导体内等电气隧道的概念。在离间分子紧密的分子之间形成,这些隧道使电子能够以相同的能级跨分子移动,从而导致电流。代替导体中的自由电子,通常局限于各自分子内的轨道,低于访问这些导电隧道所需的能级。将电子抬高到隧道中需要能量,这表现为电阻。可以通过压缩分子间距来降低导体的电阻,从而最大程度地减少隧道和价轨道之间的间隙。随着额外的压力,该间隙可以进一步降低至零,从而导致隧道与价轨道相交。因此,电子可以自然进入隧道而无需额外的能量,从而导致零电阻(耐心)。该理论提供了超导现象的全面解释,包括Messner效应,临界电流密度,临界磁场,电阻率与压力之间的反比关系,以及为什么在高压下实现许多高温超导体。使用该理论,合成室温超导体的关键在于压缩分子距离。最佳方法可能涉及工程分子结构以利用特定分子之间的吸引力,从而最大程度地减少间隙。
具有增强的亮度和稳定性。3此外,当将无机NP还原为特定尺寸时,量子大小效应会诱导离散的能级,从而导致不同的效率。传统上,人们认为,在光激发下连续从NP发射uerSence,这表现为明亮的状态(“ 1”)。但是,有一些有趣的现象不符合这种情况。例如,在量子点(QD)中发现了杀性状态的随机闪烁状态。4,5这种随机闪烁的行为表明usecence可以在明亮状态('1')和黑暗状态('0')之间随机切换。显然,QD的闪光的闪烁特征提供了其他信息,这也使他们的创新