最近,其中一位作者引入了一种新的方法来研究多项式的不可约性,为ℓ2z d上的形式-Δ + V的周期性操作员获得了几个新结果。在这种情况下,刘证明,对于d = 2,费米品种在每个能级λ不可还原,除了平均能量水平。他还证明,当d≥3时,费米品种对于每个级别的λ不可还原[22]。特别是对于此类操作员,因此,Bloch品种在任意维度[22]中是不可还原的。[22]中的结果提供了关于离散设置中费米和Bloch品种不可约性的猜想的完整证明,如许多文章[3,4,10,13,16,18]中所述。
我们计划研究此类结构并实现一种高效自旋光子界面装置。这个具有挑战性的项目结合了先进的外延生长、纳米制造和量子光学实验。分子将嵌入二极管结构中,以允许在点之间施加电场,从而使两个点的能级产生共振,从而产生跨两个点的非局域化新电子态。自旋态将通过磁场下的光脉冲进行寻址和控制。然后可以设置原始实验,例如将一系列射频磁场脉冲调整到单重态-三重态自旋共振,从而驱动光学初始化的量子比特。
我们提出了一种差异量子本素(VQE)算法,用于在循环树二元性中有效地引导多链feynman图的因果表示,或等效地,在有线图中选择了acyclic配置。基于描述多核拓扑的邻接矩阵的循环hamiltonian,其不同的能级对应于循环的数量,而VQE则将其最小化以识别因果或无环构型。该算法已改编成选择多个退化的最小值,从而达到更高的检测率。详细讨论了与基于Grover的算法的性能比较。,VQE方法通常需要更少的量子和较短的电路来实施,尽管成功率较小。
界面裁缝对于钙钛矿太阳能电池(PSC)的效率和稳定性至关重要。报告的界面工程主要集中在能级转弯和陷阱状态钝化上,以改善PSC的光伏性能。在这篇综述中,根据材料界面的电子转移机制的基础进行了分子修饰。对能量水平修改和陷阱钝化的深入分析,以及接口调整中采用的通用密度功能理论(DFT)方法。此外,还讨论了通过界面工程来解决环境保护和大规模迷你模型制造的策略。本评论可以指导研究人员了解界面工程,以设计有效,稳定和环保PSC的接口材料。
关于广泛接受的BCS超导理论的挑战可能是由于对自由移动电子和金属键的海洋的误解。基于这些概念,假定电阻是由导体中的电子振动和碰撞引起的。隐含地授予了该模型,BCS理论表明,库珀对耦合电子可以最大程度地减少其振动和抗性,从而导致超导性。但是,如果将电子电子负责将分子固定在金属键中,那么当电子在电流中移动时,金属结构如何保持稳定?这些模型的主要挑战是压力对电阻率和超导率的负面影响。放弃了这些模型,替代理论介绍了导体内等电式隧道的概念。在离间分子紧密的分子之间形成,这些隧道使电子能够以相同的能级跨分子移动,从而导致电流。电子,而不是自由移动,通常局限于其各自分子内的轨道,低于这些导电隧道的能级。将电子升入隧道需要能量,这表现为电阻。可以通过压缩分子间距来降低导体的电阻,从而最大程度地减少隧道和价轨道之间的间隙。随着额外的压力,该间隙可以进一步降低至零,从而导致隧道与价轨道重叠。因此,电子自然地驻留在隧道中,而无需向隧道提升能量,从而导致零电阻(零电导率)。该理论全面地解释了观察到的超导现象,包括Meissner效应,临界电流密度,临界磁场,电阻率与压力之间的逆关系以及为什么在高压下实现许多高温超导体。根据该理论,压缩分子距离是合成室温超导体的关键。最佳方法涉及工程分子结构以利用特定分子之间的吸引力,从而最大程度地减少了间隙。
中级量子 (NISQ) 计算。NISQ 机制考虑了只有几十到几百个量子比特 (qubits) 和中等误差的近期机器。鉴于量子资源的严重限制,充分优化量子算法的编译对于成功计算至关重要。先前的架构研究已经探索了映射、调度和并行等技术,以扩展可能的有用计算量。在本文中,我们考虑另一种技术:量子三元组 (qutrits)。虽然量子计算通常表示为量子比特的两级二进制抽象,但量子系统的底层物理本质上并不是二进制的。虽然经典计算机在物理层面以二进制状态运行(例如,在阈值电压之上和之下剪切),但量子计算机可以自然访问无限的离散能级谱。事实上,硬件必须主动抑制更高级别的状态才能实现两级量子比特近似。因此,使用三级量子位只不过是选择增加一个离散能级,虽然代价是增加出错几率。先前对量子位(或更一般地,d 级量子位)的研究只发现,扩展量子比特可获得常数因子增益。总体而言,先前的研究 1 强调了量子位的信息压缩优势。例如,N 个量子比特可以表示为 N=log2ð3Þ 量子位,这会导致运行时间有 log2ð3Þ1:6 常数因子改进。我们的方法以一种新颖的方式使用量子位,本质上是使用第三状态作为临时存储,但是代价是每次操作的错误率更高。在这种处理下,运行时间(即电路深度或关键路径)渐近更快,计算的可靠性也得到了提高。此外,我们的方法仅在中间阶段应用量子三元操作:输入和输出仍然是量子位,这对于实际设备上的初始化和测量非常重要。2;3
摘要。核自旋能级在理解镧系元素单分子磁体中的磁化动力学以及量子比特的实现和控制方面起着重要作用。我们使用包括自旋轨道相互作用在内的多配置从头算方法(超越密度泛函理论)研究了阴离子 DyPc 2(Pc=酞菁)单分子磁体中 161 Dy 和 163 Dy 核的超精细和核四极相互作用。之所以选择 Dy 的两种同位素,是因为其他同位素的核自旋为零。这两种同位素的核自旋 I = 5 / 2,尽管核磁矩的大小和符号彼此不同。电子基态和第一激发的 Kramers 双线之间的巨大能隙使我们能够将微观超精细和四极相互作用汉密尔顿量映射到电子伪自旋 S eeff = 1 / 2 的有效汉密尔顿量上,这对应于基态 Kramers 双线。我们的从头算表明,核自旋和电子轨道角动量之间的耦合对超精细相互作用贡献最大,并且 161 Dy 和 163 Dy 核的超精细和核四极子相互作用都比 TbPc 2 单分子磁体中的 159 Tb 核的要小得多。计算出的电子-核能级分离与 163 DyPc 2 的实验数据相当。我们证明 Dy Kramers 离子的超精细相互作用会导致零场下的隧道分裂(或磁化的量子隧穿)。这种效应不会发生在 TbPc 2 单分子磁体中。发现 161 DyPc 2 和 163 DyPc 2 避免的能级交叉的磁场值明显不同,这可以从实验中观察到。