在全球范围内,肥胖和糖尿病的患病率有所增加,心脏病是其主要死亡原因。传统上,肥胖和糖尿病的管理主要集中在减轻体重和控制高血糖上。不幸的是,尽管做出了这些努力,但药物管理差会使这些患者的心力衰竭容易。开发心力衰竭的刺激器是心脏组织如何利用不同的燃料来源来获得能量。在这方面,心脏从使用各种底物转变为主要使用脂肪酸(FA)。将使用FA作为独家能源的这种转变在疾病的初始阶段很有帮助。然而,在糖尿病的进展中,这具有严重的结局。这是因为有毒副产品是通过过度使用FA产生的,FA会削弱心脏功能(心脏病)。脂蛋白脂肪酶(LPL)负责调节FA向心脏的递送,并且其在糖尿病期间的功能尚未完全揭示。在这篇综述中,将讨论LPL调节心脏在控制条件和糖尿病之后的燃料利用的机制,以试图确定治疗干预的新目标。目前,作为直接针对糖尿病心脏病的治疗选择是稀缺的,对LPL的研究可能有助于药物开发,该药物开发仅针对巨噬细胞中的心脏和脂质积累的燃料利用,以帮助延迟,预防或治疗心脏衰竭,并在糖尿病期间对此病情进行长期管理。
1来自丹佛国家犹太人健康部医学系(M.E.W. );麦克马斯特大学和加拿大安大略省汉密尔顿的圣约瑟夫医疗保健(P.N. );国家稀有系统性自身免疫性疾病的内科医学系,医院科钦和巴黎大学的Cité大学(B.T. ) ),以及蒙彼利埃大学呼吸系统疾病系,中心医院蒙彼利埃大学,INSERM,中心,蒙彼利埃(A.B.)中心国家de la Recherche Scientifique - 所有人都在法国;内科,风湿病学和免疫学系,德国基尔希姆·泰克大学Medius Kliniken,德国(B.W. ) );剑桥大学医学系(D.R.W.J. )以及生物制药医学(A.S.)和后期呼吸和免疫学,生物制药研究与发展(C.W. ),阿斯利康,剑桥和盖伊的严重哮喘中心,免疫学和微生物科学学院,伦敦国王学院,伦敦国王学院(D.J.J.) - 所有在英国;布鲁塞尔的Libre de Bruxelles大学内科医学系 );后期呼吸和免疫学,生物制药研究与开发,阿斯利康,哥德堡,瑞典(L.B.S.,S.N。 );后期呼吸和免疫学,生物制药研究与开发(Y.F.,M.J。)以及转化科学与实验医学,早期呼吸和免疫学,生物制药研究与发展(C.M.1来自丹佛国家犹太人健康部医学系(M.E.W.);麦克马斯特大学和加拿大安大略省汉密尔顿的圣约瑟夫医疗保健(P.N.);国家稀有系统性自身免疫性疾病的内科医学系,医院科钦和巴黎大学的Cité大学(B.T.),以及蒙彼利埃大学呼吸系统疾病系,中心医院蒙彼利埃大学,INSERM,中心,蒙彼利埃(A.B.)中心国家de la Recherche Scientifique- 所有人都在法国;内科,风湿病学和免疫学系,德国基尔希姆·泰克大学Medius Kliniken,德国(B.W.);剑桥大学医学系(D.R.W.J.)以及生物制药医学(A.S.)和后期呼吸和免疫学,生物制药研究与发展(C.W.),阿斯利康,剑桥和盖伊的严重哮喘中心,免疫学和微生物科学学院,伦敦国王学院,伦敦国王学院(D.J.J.)- 所有在英国;布鲁塞尔的Libre de Bruxelles大学内科医学系);后期呼吸和免疫学,生物制药研究与开发,阿斯利康,哥德堡,瑞典(L.B.S.,S.N。);后期呼吸和免疫学,生物制药研究与开发(Y.F.,M.J。)以及转化科学与实验医学,早期呼吸和免疫学,生物制药研究与发展(C.M.),阿斯利康,盖瑟斯堡,马里兰州;以及宾夕法尼亚大学(P.A.M.)的宾夕法尼亚大学生物统计学,流行病学和信息学生物统计学系流行病学系风湿病学系和流行病学系。
纳米技术的开发和应用在医疗ELD方面取得了显着进步。各种纳米尺度的构建块为诊断和治疗疾病提供了替代的输送选项。1 - 4食品药物管理局(FDA)已批准了几种纳米载体,用于癌症或其他疾病的临床成像和治疗,例如脂质体和基于脂质的纳米颗粒,蛋白质纳米颗粒,聚合物胶束,无机纳米颗粒等。5 - 8然而,大多数纳米载体被困在临床前研究中,原因有很多:批处理综合,生物相容性问题,缺乏合适的靶向选择部位,尤其是潜在的免疫毒性。9,10理想的纳米载体应具有出色的生物相容性,效果和靶向能力。由于基于脂蛋白的天然纳米颗粒可以满足这些要求,因此这是纳米医学的一个有希望的方向。11
摘要:高密度脂蛋白 (HDL) 胆固醇传统上被视为预防心血管疾病 (CVD) 的物质。然而,新证据表明,功能失调的 HDL 以胆固醇逆向转运 (RCT) 受损、抗炎和抗氧化活性降低以及内皮功能障碍增加为特征,这可能导致冠状动脉疾病 (CAD)。功能失调的 HDL 是由载脂蛋白 A-1 (Apo A-1) 的氧化修饰和酶失活引起的,无法有效清除外周组织中的胆固醇,并可能促进炎症和动脉粥样硬化。影响 HDL 代谢的基因突变进一步使其在心血管健康中的作用复杂化。研究表明,旨在提高 HDL-C 水平的传统疗法不一定能减少心血管事件,这凸显了改善 HDL 功能的新方法的必要性。正在探索治疗策略,例如 Apo A-1 模拟肽、重组 HDL 输注和针对特定 HDL 代谢途径的药物。此外,减肥、他汀类药物治疗和烟酸已显示出增强 HDL 功能的潜力。功能失调的 HDL 的病理生理学涉及复杂的机制,包括氧化应激、炎症和基因突变,这些机制会改变其结构和功能,从而削弱其心脏保护作用。新的功能检测,如胆固醇流出能力 (CEC) 和 HDL 炎症指数,通过评估 HDL 质量而不是数量,可以更准确地预测心血管风险。随着研究的进展,重点转向增强 HDL 功能并解决其功能障碍根本原因的治疗策略,从而为降低心血管风险和预防 CAD 提供更有效的方法。
。cc-by-nc-nd 4.0国际许可证(未获得同行评审证书)获得的是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权所有,该版本发布于2023年7月20日。 https://doi.org/10.1101/2023.07.04.547613 doi:Biorxiv Preprint
冠心病、中风和心力衰竭。Lp(a) 由低密度脂蛋白样颗粒组成,其中载脂蛋白 A (apo[a]) 和载脂蛋白 B-100 共价连接,这解释了其促血栓、促炎症和促动脉粥样硬化的特性。Lp(a) 血清浓度由 apo(a) 异构体基因决定,较短的异构体具有较高的颗粒合成率。迄今为止,尚无有效降低 Lp(a) 水平的获批药物疗法。针对 apo(a) 表达的有前景的治疗方法包括基于 RNA 的药物,例如 pelacarsen、olpasiran、SLN360 和 lepo-disiran,这些药物目前正在临床试验中。在这篇全面的综述中,我们详细概述了基于 RNA 的治疗方法,并讨论了专门用于降低 Lp(a) 水平从而降低心血管疾病风险的 RNA 疗法的最新进展和挑战。
。cc-by-nc-nd 4.0国际许可证(未获得同行评审证书)获得的是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权所有,该版本于2023年7月4日发布。 https://doi.org/10.1101/2023.07.04.547613 doi:Biorxiv Preprint
在寻找特定的自然敌人时,可以控制来自南美的两种侵入性水生植物(IAP),路德维亚grandiflora subsp。十六世纪(Onagraceae)和Myrio phyllum水生(Haloragaceae),与两个lysathiabechyné相关的分类挑战,1959年(Chrysomelidae; Alticini)种类必须解析。溶解脂蛋白(Boheman,1859年)表现出显着的形态变化,对这两种IAP造成严重损害,并且由于宿主之间的系统发育差距可能代表多个物种。此外,一种未描述的溶解菌种(以前以溶解度为lysathiasp。)已成功用作南非水生的控制剂。采用了结合遗传学和形态分析的综合分类方法。graptodera flavipes boheman,1859年的门型和副型。系统发育研究表明,乳杆菌具有比最初描述的更大的遗传和形态变异,并且没有证据表明黄乳杆菌代表了与其宿主植物相关的物种复合物。结果,物种描述扩大了。另一方面,遗传和形态学差异(例如体型,化学和生殖器结构)进一步支持了lysathia cilliersae cabrera的描述,sp。nov。及其与其他密切相关的物种的分化,包括黄乳杆菌和L. ludoviciana(秋季,1910年)。L. cilliersae sp。的标本。nov。阿根廷在米苏(Misiones)收集,与南非的人相匹配。遗传序列与形态和生殖器的传奇凭证,图像和图像以及新的分布记录相关。这项研究有助于溶解属的分类知识,并支持在应用昆虫学环境(例如生物控制程序)中准确的物种鉴定。
摘要:对抗多药革兰氏阴性细菌的新抗生素仍然存在至关重要的需求,这是一种继续影响死亡率的主要全球威胁。脂蛋白信号肽酶II是革兰氏阴性细菌的脂蛋白生物合成途径中必不可少的酶,使其成为发现抗菌药物发现的有吸引力的靶标。尽管已经鉴定出了LSPA的天然抑制剂,例如环状双肽球霉素,稳定性和生产困难限制了它们在临床环境中的使用。我们利用计算设计生成球霉素的稳定的新循环肽类似物。只需要合成和测试12种肽,以产生有效的抑制剂,避免准备大型图书馆和筛选运动。在针对Eskape-E病原体的微稀释测定中,最有效的类似物比球霉素表现出比球霉素相比或更好的抗菌活性。这项工作将计算设计作为对抗抗生素耐药性的一般策略。
目的:糖尿病性肾病(DN)是2型糖尿病(T2DM)的常见并发症,可显着影响受影响患者的生活质量。血脂异常是T2DM患者患心血管并发症的已知危险因素。然而,血清脂蛋白(A)(LP(A))和高密度脂蛋白胆固醇(HDL-C)与DN之间的关联需要进一步研究。患者和方法:在这项横断面研究中,我们从142,611名患者的队列中随机选择了肾病(DN,n = 211)的T2DM患者(DN,n = 211)和没有肾病的T2DM患者(T2DM,n = 217)。我们从患者那里收集了临床数据,以使用二元逻辑回归和机器学习来识别DN的潜在危险因素。通过构建随机森林分类器获得了临床指标的特征重要性评分后,我们检查了LP(A),HDL-C和前10个指标之间的相关性。最后,我们使用培训数据训练了具有前10个功能的决策树模型,并通过独立的测试数据评估了其性能。结果:与T2DM组相比,DN组的LP(a)(p <0.001)和HDL-C的水平明显更高(P = 0.028)。lp(a)被确定为DN的危险因素,而HDL-C则具有保护性。使用前10个功能训练的决策树模型,并以截止值为31.1 mg/L的UALB显示,在接收器操作特征曲线(AUC)下,平均面积为0.874,AUC范围为0.870至0.890。We identified the top 10 indicators that were associated with Lp(a) and/or HDL-C, including urinary albumin (uALB), uALB to creatinine ratio (uACR), cystatin C, creatinine, urinary ɑ1-microglobulin, estimated glomerular filtration rate (eGFR), urinary β2-microglobulin, urea nitrogen, superoxide歧化酶和纤维蛋白原。结论:我们的发现表明血清LP(a)和HDL-C与DN相关联,我们提供了一个决策树模型,以UALB作为DN的预测指标。关键字:类型2糖尿病,糖尿病性肾病,高密度脂蛋白胆固醇,脂蛋白(A),机器学习