摘要:本文介绍了使用叶状脂质的稳定化,N-(甲基氧基乙基氧苯乙烯)-1,2-二抗乙酰烯酰基-SN-甘油-3-磷酸乙醇胺钠含量(DSPE-PEG)(DSPE-PEG)(DSPE-PEG)(DSPE-PEG)(DSPE-PEG)和自然海关的评估。脂质体,并比较不同长度和DSPE-PEG的引入比率。随着PEG比的增加,存活率增加。此外,研究了不同阳离子溶液(Na +,K +,Mg 2+和Ca 2+溶液)中的存活率,以估计DSPE-PEG引入的效果。我们提出,脂质体稳定性的这些变化是由于阳离子引起的,特别是聚(乙二醇)(PEG)(PEG)链和二价离子之间的相互作用,这有助于使阳离子难以进入脂质膜。我们的研究提供了对PEG脂质使用的见解,并可能为使用不同自然环境的脂质体分子机器人制造一种有希望的方法。
简介:许多治疗分子无法穿过血脑屏障 (BBB),且难以渗透到肿瘤组织,导致脑肿瘤治疗面临巨大挑战。为了解决这些障碍,我们开发了一种新型多功能靶向载体,使药物能够穿过 BBB 并靶向脑肿瘤组织。方法:在多功能靶向脂质体中,天然化合物白藜芦醇 (RES) 被整合到脂质体的脂质双层膜中,而对氨基苯基-α-D-甘露糖吡喃苷 (MAN) 和麦芽凝集素 (WGA) 则结合到脂质体表面。然后将抗癌药物表柔比星 (EPI) 装入脂质体中。然后,通过评估粒径、zeta 电位和表观形态来表征脂质体。将WGA和MAN修饰的白藜芦醇表柔比星脂质体应用于体外胶质瘤细胞和BBB模型以及体内C6胶质瘤大鼠。结果:多功能靶向脂质体形圆整,表面光滑,粒径均一。从SRB结果来看,多功能靶向脂质体显示出明显的抑制效果,提示MAN加WGA对脑肿瘤细胞产生了强大的药物递送效果。流式细胞术检测发现,给予WGA和MAN修饰的白藜芦醇表柔比星脂质体后的胶质瘤细胞摄取和凋亡最为明显。在多功能靶向效果实验中,WGA和MAN修饰的白藜芦醇表柔比星脂质体穿过BBB并靶向脑肿瘤细胞的效果最强。荷瘤大鼠应用多功能靶向脂质体后,中位生存期明显长于对照组。结论:WGA和MAN修饰的表柔比星加白藜芦醇脂质体对表柔比星和白藜芦醇跨血脑屏障的转运能力强,对脑胶质瘤具有良好的治疗作用,具有多功能靶向性。关键词:多功能靶向脂质体,血脑屏障,细胞凋亡,白藜芦醇,脑胶质瘤
抽象背景:三重阴性乳腺癌(TNBC)是一种侵袭性肿瘤,其死亡率极高,由于缺乏有效的治疗靶标。作为与肿瘤发生和肿瘤转移相关的粘附分子,分化44(也称为CD44)在TNBC中过表达。此外,特定的透明质酸类似物,即壳聚糖寡糖(CO)可以有效地获得CD44。在这项研究中,设计了一个共涂层的脂质体,将光杀手(HPPH)作为660 nm光介导的光敏剂和Evofofosfamide(也称为TH302),为缺氧激活的前药。获得的脂质体可以通过荧光成像来帮助诊断TNBC,并通过协同光动力疗法(PDT)和化疗产生抗肿瘤治疗。结果:与非靶向的脂质体相比,靶向脂质体在体外表现出良好的生物相容性和靶向能力。在体内,靶向脂质体具有更好的荧光成像能力。此外,载有HPPH和TH302的脂质体比在体外和体内的其他单一疗法组表现出明显更好的抗肿瘤作用。结论:令人印象深刻的协同抗肿瘤效应,加上优质的荧光成像能力,良好的生物相容性和较小的副作用,使脂质体赋予了诊断和过表达癌症治疗的未来转化研究的潜力。关键字:三重阴性乳腺癌,光动力疗法,壳聚糖寡糖,CD44,脂质体
脂质体是双层囊泡,它们在水性环境中分布后自发形成(10)。磷脂,例如磷脂酰胆碱和磷脂酰甘油,是两亲的,而其他物质(如胆固醇)通常包括在制剂中(9,10)。可以在脂质体内诱捕亲水性化合物,而亲脂化合物通常包含在脂质体膜中(10)。脂质体因其在靶向药物递送中的潜力和实际使用而变得流行。脂质体以其在靶向药物递送中的潜力和实际使用而闻名(11)。此外,脂质体似乎具有许多优势,例如低成本,高稳定性和生物降解性,以及刺激体液和细胞介导的免疫反应的能力(10,11)。
图 1. 磁脂质体主要结构的示意图(未缩放)和相应的电子显微镜图像,例如:(A)固体磁脂质体(SML);(B)水性磁脂质体(AML)(经美国化学学会许可,改编自参考文献 [20],2021 年);(C)基于膜嵌入纳米粒子的磁脂质体(经皇家化学学会许可,改编自参考文献 [22],2021 年);(D)基于表面共轭纳米粒子的磁脂质体(经皇家化学学会许可,改编自参考文献 [25],2021 年)。
脂质体是多功能,自组装的囊泡,具有跨越药物,化妆品和生物技术的应用。本综述提供了对脂质体的全面检查,重点是它们的分类,制备方法和组成方面。我们首先深入研究脂质体的各种分类方案,包括Unilamellar和Multilamelar结构,及其基于大小和电荷的子类别。接下来,我们探讨了脂质体制备的多种方法,从传统技术(例如薄膜水合方法)到高级方法,例如微流体混合和溶剂注射。此外,我们讨论了脂质组成的影响,包括磷脂,胆固醇和其他添加剂对脂质体的物理化学特性和功能的影响。通过综合当前知识并突出最近的进步,本综述旨在提供对脂质体技术及其对未来研究和应用的影响的全面了解。
摘要 脂质体药物输送系统是革新制药行业最有前途的创新之一。它将具有亲水性和疏水性的药物整合到生物相容性的脂质双层中。在这篇综述中,我们将讨论脂质体的一般特性,包括组成和与增加药物溶解度、稳定性和靶向输送有关的机制。它提到脂质体制剂的开发和重要里程碑,例如 FDA 批准 Doxil,是脂质体临床应用的转折点。它已用于肿瘤治疗领域,其中全身毒性同时降低,同时使治疗更有效。本文还强调了脂质体系统、缓释特性和联合疗法的优势,这些优势有助于解决耐药性问题。进一步回顾了脂质体的当前临床应用,以展示确实影响患者治疗的成功产品。脂质体技术与新型治疗策略的结合具有良好的前景,从这个方向可以考虑更有效治疗和个性化治疗的要求。本综述重点介绍了脂质体药物输送系统在现代医学中的关键作用,强调了它们彻底改变治疗方法和患者治疗效果的潜力。
抽象的骨转移性乳腺癌是由于乳腺癌转移而导致骨骼中的恶性肿瘤,其发病率在全球范围内增加。对骨骼转移的癌症的治疗仍然是一个挑战,因为抗癌药缺乏目标特异性。寻找有效的骨转移治疗方法仍然是一个紧迫的问题。为了增强紫杉醇(PTX)向骨转移酶病变的递送,在这项工作中设计并合成了一种新型的葡萄糖衍生物,该葡萄糖衍生物被用作脂质体配体来开发磁性脂质体G-Mlip(葡萄糖修饰的磁性磁性脂质体)。脂质体可以改善由葡萄糖转运蛋白1(GLUT1)介导的骨转移酶中的药物制剂,然后靶向癌细胞。通过薄膜水合 - 耗散法制备了PTX负载的磁性脂质体PTX-G-MLIP。和诸如大小,Zeta电位,封装效率,释放曲线,稳定性,溶血等表征得到了很好的评估。更重要的是,在体外和小鼠中还研究了增强的目标能力。与游离PTX和其他脂质体相比,在磁场(MF)存在下,骨转移酶病变中PTX-G-MLIP的PTX浓度显着增加。受到增强的靶向能力的启发,葡萄糖改性的磁性脂质体可以作为靶向和治疗骨转移的有效药物输送系统。
irinotecan(IRN)是camptothecin的半合成衍生物,充当拓扑异构酶I抑制剂。irn在全球范围内用于治疗几种类型的癌症,包括大肠癌,但是其使用可能导致严重的不良反应,例如腹泻和骨髓抑制。脂质体被广泛用作药物输送系统,可以改善化学治疗活性并降低副作用。脂质体也可以在酸性环境(如肿瘤)中优先释放其含量,并以靶向目的进行表面官能化。在此,我们开发了一种叶酸涂层的pH敏感脂质体作为药物输送系统,以使IRN达到改善的肿瘤疗法,而无需潜在的不良事件。脂质体,含有IRN,并针对粒径,多分散性指数,Zeta电位,浓度,封装,细胞摄取和释放曲线进行了炭化。在大肠癌的鼠模型中研究了抗肿瘤活性,并通过血液学/生化测试和主器官的组织学分析评估其毒性。结果显示,小于200 nm的囊泡,几乎没有分散,表面电荷接近中性,高包装速率超过90%。该系统以pH值依赖性方式显示出延长和持续的释放,并具有高细胞内药物输送能力。重要的是,叶酸涂层的pH敏感制剂的抗肿瘤活性明显优于pH依赖性系统或游离药物。含有IRN的组的肿瘤组织呈现大量坏死。肿瘤组织呈现大量坏死。此外,没有发现对所研究组的全身毒性的证据。因此,我们开发的纳米果IRN递送系统可能是传统结直肠癌治疗的一种替代方法。
脂质体递送系统显着提高了化学治疗剂的功效和安全性。脂质体是由亲脂性双层组成的囊泡和hy drophilic核心,为其作为各种Thera Peutic和诊断剂的运输工具提供了绝佳的机会。阿霉素是用于评估不同脂质体应用的最具利用的化学治疗剂,因为其物理化学特性允许高药物捕获和易于远程降低预成型的脂质体。pegypated脂质体阿霉素临床批准,在市场上,doxil®例证了脂质体与聚乙烯乙二醇的表面修饰所带来的好处。这种独特的配方延长了循环中的药物停留时间,并通过被动靶向(增强的渗透性和保留效应)在肿瘤组织中的Doxo Rubicin的积累增加。但是,通过将生物活性配体偶联到脂质体表面以产生智能药物输送系统,可以进一步提高靶向肿瘤的效率。小的生物分子,例如肽,抗体和碳水化合物的一部分具有靶向恶性细胞表面上的受体的潜力。因此,已经尝试使用功能化纳米载体(用阿霉素囊形的脂质体封装)对恶性细胞进行主动靶向,并在本文中进行了综述。