大自源性是一个细胞内降解过程,需要多个自噬相关(ATG)基因。在这项研究中,我们使用自噬型号报告基因GFP-LC3-RFP进行了全基因组筛选,并鉴定出TMEM41B作为一种新型ATG基因。TMEM41B是一种位于内质网(ER)中的多层膜蛋白。它在液泡膜蛋白1(VMP1)中也发现了一个保守的结构域,这是另一种ER多跨度膜蛋白,对于自噬,酵母菌TVP38必不可少的,以及推定的半转生蛋白的细菌deda家族。TMEM41B的缺失阻止了早期的自噬体的形成,从而导致ATG蛋白和小囊泡的积累,但不会拉长自噬体样结构。此外,在TMEM41B -KNOCKOUT(KO)细胞中积累的脂质液滴。TE表型类似于VMP1 -KO细胞的表型。的确,TMEM41B和VMP1在体内和体外形成了复杂的复杂,VMP1的过表达恢复了TMEM41B -KO细胞中的自噬量。TESE结果表明,TMEM41B和VMP1在自噬体形成的早期步骤中起作用。
在发育过程中,大鼠脑髓磷脂亚菌群中描述了含有含有神经酰胺半乳糖基转移酶的酶UDP-半乳糖糖羟基脂肪酸的定位和活性。其他脂质合成酶,例如脑硫磺硫酸光转移酶,UDP-葡萄糖 - 葡萄糖 - 陶瓷葡萄糖基转移酶和CDP-胆碱-1,2-二酰基甘油胆碱磷酸酶磷酸酶也已在肌蛋白亚纤维上和微晶片中进行比较。纯化的髓磷脂被异icnic蔗糖密度梯度离心分离。四个髓磷脂亚馏分分别在0.55 m-(浅绿色蛋白级分),0.75 m-(重膜蛋白级分)和0.85 m-核(膜馏分)和一个颗粒中,分离并纯化。在所有年龄段,在重肌蛋白馏分中发现了总髓磷脂蛋白的70-75%,而在轻膜林馏分中恢复了2-5%的蛋白质,而在膜分数中约为7-12%。大多数半乳糖基转移酶与重膜蛋白和膜分数有关。所研究的其他脂质合成酶似乎不与纯化的髓磷脂或髓磷脂亚菌群相关,而是在微体积 - 膜分数中富集。在发育过程中,当动物大约20天大然后下降时,微粒体半乳糖基转移酶的特异活性达到了最大值。相比之下,在重膜蛋白和膜级分中,半乳糖基转移酶的特异活性比16天大的动物中微粒体膜高3-4倍。酶在重绿色蛋白级分中的特定活性随着年龄的增长而急剧下降。对各个年龄段的重髓蛋白和髓磷脂亚折原的化学和酶学分析表明,膜级分所含的蛋白质与脂质有关,而不是重膜蛋白分数。与胆固醇相比,膜级分在磷脂中也富集,并含有2':3'-循环核苷酸3'-磷酸水解酶,而与重蛋白质和轻质蛋白质级别相比。膜馏分缺乏髓磷脂碱性蛋白和蛋白质蛋白,并富含高分子量蛋白。在髓鞘化刚刚开始的时候,半乳糖基转移酶在重膜蛋白和膜级分中的特定定位表明它可能在髓鞘化过程中起作用。
1。蛋白质设计 /工程 /肽体系学。2。将机器学习,图像处理,深度学习方法应用于现代生物学和相关的不同跨学科领域的当代挑战性问题。3。蛋白质动力学 /呼吸 /熔融球 /内在疾病。4。膜蛋白的结构分析,膜嵌入,膜蛋白的吸毒5。大分子结构验证,排名和评分,分子对接中构象采样的策略。使用基于替代知识的半经验功能(例如互补性)而不是能量功能,探测蛋白质蛋白 /蛋白核酸相互作用。6。图理论中的经典问题及其在理解生物网络中的应用7。蛋白质基于结构的功能注释。大分子进化。8。有理药物设计。评分蛋白 - 小分子相互作用,虚拟筛选
K04超XCHEM用于药物发现的串行MX相对于辐射衰减,25keV增加了衍射产率较高的衍射,弱衍射,不均匀晶体的通量较高 - 膜蛋白和大型复合物
摘要 为了触发配子融合,精子需要激活分子机制,其中精子 IZUMO1 和卵母细胞 JUNO(IZUMO1R)相互作用在哺乳动物中起着至关重要的作用。尽管最近已经确定了一组参与此过程的因子,但尚未报道在脊椎动物和无脊椎动物中都能发挥作用的共同因子。在这里,我们首先证明进化保守的因子树突状细胞表达的七个跨膜蛋白结构域 1(DCST1)和树突状细胞表达的七个跨膜蛋白结构域 2(DCST2)对小鼠的精子-卵子融合至关重要,这已通过基因破坏和互补实验得到证实。我们还发现另一个与配子融合相关的精子因子 SPACA6 的蛋白质稳定性受到 DCST1/2 和 IZUMO1 的不同调节。因此,我们认为精子通过整合各种分子途径来确保哺乳动物的正常受精,其中包括经过近十亿年进化而形成的进化保守的系统。
设施,约旦8。经验和研究兴趣Rahman博士加入了国家生物技术与基因工程研究所(Nibge)Faisalabad,巴基斯坦,科学官员,1999年。从1999年至2000年,他就微生物的遗传分析及其在硫酸矿石的微生物浸出中进行了研究。之后(2001- 2003年),他通过优化各种营养和物理参数,并使用真菌crymemonium chrysogenum使用分子生物学技术,参与了头孢菌素C的生物合成和超级产生。2003年,拉赫曼博士获得了国际竞争奖学金,即伊斯兰发展银行的优异奖学金奖学金。 在博士项目中,对药理和生理重要性的各种膜蛋白的结构和功能研究进行了研究。 这些蛋白质包括细菌中存在的人类转运蛋白的同源物,例如大肠杆菌,流感嗜血杆菌等。 在利兹大学和英国利物浦大学博士学位和博士后研究期间; Rahman博士的Nibge Faisalabad和Harvard Medical School广泛参与了由重组手段产生的与健康相关的真核生物和原核膜/可溶性蛋白的表征。 in2003年,拉赫曼博士获得了国际竞争奖学金,即伊斯兰发展银行的优异奖学金奖学金。在博士项目中,对药理和生理重要性的各种膜蛋白的结构和功能研究进行了研究。这些蛋白质包括细菌中存在的人类转运蛋白的同源物,例如大肠杆菌,流感嗜血杆菌等。在利兹大学和英国利物浦大学博士学位和博士后研究期间; Rahman博士的Nibge Faisalabad和Harvard Medical School广泛参与了由重组手段产生的与健康相关的真核生物和原核膜/可溶性蛋白的表征。in这些蛋白质是使用多种生物化学和物理技术来表征的,例如使用Ni-NTA琼脂糖,凝胶过滤和离子交换方法,蛋白质纯化,蛋白质纯化,以及通过固体旋转的固体旋转量和蛋白质旋转的膜蛋白进行膜蛋白的传输测定等温滴定量热分析,红外和圆形二分法光谱的二级结构分析,通过荧光光谱法对底物结合的构象变化以及通过电子和X射线晶体学测定的结构测定。
Janus激酶(JAK)蛋白是酪氨酸激酶蛋白,与信号换能器和转录(Stat)蛋白的激活剂一起形成JAK STAT途径。Jak家族有四个成员:JAK1,JAK2,JAK3和TYK2; STAT家族有7个成员。JAK蛋白位于跨膜蛋白的细胞内部分作为同型或异二聚体。当信号分子附着在跨膜蛋白上时,它会随着JAK分子的磷酸化而经历结构变化。这些JAK分子然后形成了统计蛋白的对接位点。stat蛋白然后经历磷酸化,转移到细胞核并调节基因转录。1 JAK途径失调与各种自身免疫性疾病有关。jak抑制剂(Jaki)是小分子,由于其在免疫发作中的选择性作用,其作用很广。这些分子可作为口服或局部药物提供,增加了它们的可接受性和便利性。jaki已获得FDA的批准,用于治疗特应性皮炎(口服abrocitinib,口服upadacitinib和局部ruxolitinib),脱发
化学探针是了解生物系统的重要工具。然而,由于靶标和潜在化合物的组合空间巨大,传统的化学筛选无法系统地应用于寻找所有可能的药物靶标的探针。在这里,我们展示了一个克服这一挑战的新概念,即利用高通量代谢组学和过表达来预测药物-靶标相互作用。收集了用来自化学库的 1,280 种化合物处理的酵母的代谢组谱,并将其与可诱导的酵母膜蛋白过表达菌株的代谢组谱进行比较。通过匹配代谢组谱,我们预测了哪些小分子靶向哪些信号系统并恢复了已知的相互作用。在所研究的 86 个基因中生成了药物-靶标预测,包括难以研究的膜蛋白。测试和验证了这些预测的一个子集,包括布洛芬对 GPR 1 信号的新靶向。这些结果证明了使用高通量代谢组学预测真核蛋白的药物-靶标关系的可行性。
使用7E11-C5,沃伦·赫斯顿(Warren Heston)与威廉·费尔(William Fair)在纪念斯隆·凯特林(Sloan Kettering)癌症中心(Memorial Sloan Kettering Cencer Center)在1993年克隆了PSMA基因(2,3)。PSMA,也称为叶酸水解酶1(FOLH1)和谷氨酸羧肽酶II(GCP-II),是750-氨基酸,100KD,II型II型跨膜蛋白,具有短N- N-末端内末端内末端内末端结构蛋白和大型C-细胞端子末端区域和大型C- t端端域外细胞外域(2)。psma主要在前列腺和近端肾小管的子集中表达,在小肠,唾液腺,唾液腺和一些神经胶质细胞中的表达较低(1-5)。在1993年,赫斯顿得出结论,“作为前列腺上皮细胞独有的整体膜蛋白,抗原或可能是特定的PSM [A]配体可以作为转移性沉积物的出色位点,以靶向转移性沉积物,”将PSMA作为Theranostic靶标的阶段(2)。
该图的在线版本可在biocyc.org上找到。生物合成途径位于细胞质的左侧,右侧的降解途径,未分配给任何途径的反应位于细胞质的最右边。转运蛋白和膜蛋白显示在膜上。也可以显示周质(在适当的情况下)以及细胞外反应和蛋白质。途径根据其细胞功能进行着色。省略了途径之间的连接,以易读。
