oncothermia是一种个性化的高温类型,它有选择地加热恶性细胞,以热靶向其膜的纳米尺寸部分(木筏)。相对于其环境,它将这些跨膜蛋白的这些簇的温度提高了3ºC以上。加热的细胞主要因凋亡而死亡。热损伤开始产生与损伤相关的分子模式(潮湿),包括在细胞膜上的Hsp70和Hsp90的表达,TRAIL DR5死亡受体的表达以及HMGB1的释放以及HSP70的HSP70释放到HSP70中,HSP70在细胞外基质中产生了大量的Apoptotic身体。与此热诱导的复合过程一起,由于所选零件的加热,总温度升高。在体外条件下,这种温度升高可能与肉幻像中的蛋白质变性一样高,但是在生理条件下,它至少为3-4ºC,如动物和人类研究中的侵入性措施所示。我们的目标是专注于肿瘤热法的确定热行为,审查所得的热效应,这些效应点燃了上面提到的所有生物分子变化。
摘要。FAT 非典型钙粘蛋白 1 (FAT1) 基因是果蝇脂肪基因的直系同源物,编码原钙粘蛋白 FAT1。FAT1 属于钙粘蛋白超家族,这是一组含有钙粘蛋白样重复序列的全长膜蛋白。在各种类型的人类癌症中,FAT1 是最常见的突变基因之一,被认为是一种新兴的癌症生物标志物和新疗法的潜在靶点。然而,FAT1 的生物学功能及其介导的精确下游信号通路仍有待充分阐明。本综述讨论了有关 FAT1 的当前文献,重点关注 FAT1 突变和表达水平,以及它们对各种类型癌症的信号通路和机制的影响,包括实体肿瘤和血液系统恶性肿瘤,例如食管鳞状细胞癌、头颈部鳞状细胞癌、肺鳞状细胞癌、肝细胞癌、神经胶质瘤、乳腺癌、急性淋巴细胞白血病、急性髓细胞白血病、淋巴瘤和骨髓瘤。本综述旨在为未来关于 FAT1 作为致癌因子或肿瘤抑制因子的研究提供进一步的见解和研究方向。
要了解细胞如何在神经系统中进行通信,必须定义其分泌组,这对于原代细胞的挑战很大,因为需要大细胞数。在这里,我们通过开发“用点击糖的高性能分泌蛋白富集”(HISPECS)方法来小型分泌组分析。为了证明其广泛的效用,HISPEC用于确定脑切片对LPS诱导的神经炎症的分泌反应,并使用原代星形胶质细胞,微神经胶质,神经元和寡聚细胞来建立细胞类型分辨的小鼠脑秘密资源。该资源允许映射CSF蛋白的细胞起源,并揭示出意外的体外和体内分泌的蛋白质出乎意料的是蛋白水解裂解的膜蛋白extodomain。两个例子是神经分泌的Adam 22和CD 200,我们将其确定为阿尔茨海默氏症连接蛋白酶贝丝的底物1。hispecs和脑部分泌资源可以被广泛利用,以系统地研究蛋白质分泌和脑功能,并鉴定CNS疾病的细胞类型特异性生物标志物。
摘要 淀粉样蛋白前体 (APP) 是一种富含大脑的单次跨膜蛋白,可水解加工成多种产物,包括淀粉样蛋白-β (A b ),它是阿尔茨海默病 (AD) 的主要驱动因素。尽管 APP 的过度表达和外源性 A b 都会导致睡眠变化,但 APP 加工是否在调节睡眠中起内源性作用尚不清楚。在这里,我们证明 APP 加工成 A b 40 和 A b 42 在斑马鱼中是保守的,然后描述了功能丧失的 appa 和 appb 突变体的睡眠/觉醒表型。appa 突变的幼虫觉醒活动减少,而缺乏 appb 的幼虫夜间睡眠时间缩短。用 g -分泌酶抑制剂 DAPT 治疗也缩短了夜间睡眠时间,而 BACE-1 抑制剂 lanabecestat 延长了睡眠时间。脑室内注射 P3 也缩短了夜间睡眠时间,这表明 Appb 蛋白水解加工的适当平衡是斑马鱼维持正常睡眠所必需的。
遗传性溶血性贫血(HHA)被认为是韩国的一组罕见的血液学疾病,这主要是因为其独特的种族特征和诊断挑战。最近,韩国的HHA患病率增加了,反映了国际婚姻数量的增加和对疾病的认识的提高。尤其是,鉴于诊断技术的进步,红细胞(RBC)酶的诊断经历了复发。2007年,韩国血液学学会的RBC疾病工作党开发了韩国标准操作程序,用于诊断遗传性溶血性贫血,此后一直在不断更新。诊断HHA的最新韩国临床实践指南建议在分析RBC膜蛋白和酶之前将下一代测序作为初步步骤。分子基因测试方法的最新突破,尤其是下一代测序,证明对识别和提供对先前未知诊断的HHA病例至关重要。这些创新的分子基因检测方法现已成为HHA患者管理和护理计划的重要工具。本评论旨在全面概述用于诊断HHA的分子基因检测的最新进展,并特别强调了朝鲜背景。
JuhaGrönholm博士是儿科医生和免疫学研究者。 2010年,他从芬兰坦佩雷大学获得了博士学位,重点介绍了JAK/STAT信号级联的监管机制。 在美国国立卫生研究院的博士后奖学金期间,他为确定由BACH2单倍弥补引起的新型免疫力(IEI)做出了贡献(Nat。) 免疫。 2017)。 目前,Grönholm博士领导了芬兰赫尔辛基大学转化免疫学研究计划(TRIMM)的研究小组,同时在HUS HUS HUS HELSINKI大学医院的新儿童医院担任儿科血统综合研究员。 他的研究探讨了人类B细胞中IEI的分子机制和抗体类别重组的转录调节。 在他的演讲中,格恩霍尔姆博士将讨论富含芬兰人口的IEIS,并在调节跨膜蛋白1(SIT1)缺陷的信号阈值引起的新型合并免疫缺陷上介绍了他的最新发现。 SIT1编码一个跨膜适配器蛋白,对T细胞受体信号传导负面调节。 SIT1缺乏导致T细胞过度激活和矛盾的CD8 T细胞细胞毒性,从而为免疫失调提供了新的见解。JuhaGrönholm博士是儿科医生和免疫学研究者。2010年,他从芬兰坦佩雷大学获得了博士学位,重点介绍了JAK/STAT信号级联的监管机制。在美国国立卫生研究院的博士后奖学金期间,他为确定由BACH2单倍弥补引起的新型免疫力(IEI)做出了贡献(Nat。免疫。2017)。目前,Grönholm博士领导了芬兰赫尔辛基大学转化免疫学研究计划(TRIMM)的研究小组,同时在HUS HUS HUS HELSINKI大学医院的新儿童医院担任儿科血统综合研究员。他的研究探讨了人类B细胞中IEI的分子机制和抗体类别重组的转录调节。在他的演讲中,格恩霍尔姆博士将讨论富含芬兰人口的IEIS,并在调节跨膜蛋白1(SIT1)缺陷的信号阈值引起的新型合并免疫缺陷上介绍了他的最新发现。SIT1编码一个跨膜适配器蛋白,对T细胞受体信号传导负面调节。SIT1缺乏导致T细胞过度激活和矛盾的CD8 T细胞细胞毒性,从而为免疫失调提供了新的见解。
SGIP1编码含有蛋白质SH3的GRB2样蛋白3个接口蛋白1(SGIP1)。其最长的同工型SGIP1α主要在大脑中表达(Lee等,2019)。SGIP1充当CME的调节剂(Mettlen等,2018)。CME的损害与ID和癫痫等神经发育障碍有关(Helbig等,2019)。 在发育过程中,需要 cme,用于轴突和树突生长的生长,以及通过在突触前的质膜上产生网状蛋白涂层的囊泡,从而引导从血浆中的货物蛋白从血浆膜中引导到细胞质量。 货物主要由跨膜蛋白及其细胞外液化组成。 链球菌络合物形成的启动需要磷酸二醇 - 4,5-双磷酸(PIP2)和衔接蛋白AP-2。 AP-2还调节GABA和谷氨酸受体的神经元表面水平,从而调节给定神经元上的兴奋性和抑制性突触输入(Kantamneni,2015)。 SGIP1包含结合AP-2和膜磷脂结合(MP)结合的μ-体积结构域(μHD),该结合结合磷脂酰丝氨酸和磷酸肌醇,从而导致质膜膜变形(Lee等,20211)。 MP结构域由外显子4和5编码,它们独立或同时受到替代剪接的影响,在框架中引起了替代性转录本(Durydivka等,2024)。所得的SGIP同工型仍然具有与膜的粘合,但具有变化的蜂窝分布(Dury Durydivka)。 这些替代剪接变体的功能性结合尚不清楚。CME的损害与ID和癫痫等神经发育障碍有关(Helbig等,2019)。cme,用于轴突和树突生长的生长,以及通过在突触前的质膜上产生网状蛋白涂层的囊泡,从而引导从血浆中的货物蛋白从血浆膜中引导到细胞质量。货物主要由跨膜蛋白及其细胞外液化组成。链球菌络合物形成的启动需要磷酸二醇 - 4,5-双磷酸(PIP2)和衔接蛋白AP-2。AP-2还调节GABA和谷氨酸受体的神经元表面水平,从而调节给定神经元上的兴奋性和抑制性突触输入(Kantamneni,2015)。SGIP1包含结合AP-2和膜磷脂结合(MP)结合的μ-体积结构域(μHD),该结合结合磷脂酰丝氨酸和磷酸肌醇,从而导致质膜膜变形(Lee等,20211)。MP结构域由外显子4和5编码,它们独立或同时受到替代剪接的影响,在框架中引起了替代性转录本(Durydivka等,2024)。所得的SGIP同工型仍然具有与膜的粘合,但具有变化的蜂窝分布(Dury Durydivka)。这些替代剪接变体的功能性结合尚不清楚。研究丰富的外显子4层SGIP1剪接的影响
绿胡子遗传元素编码罕见的可感知信号、信号识别能力和对显示相同信号的其他人的利他行为。假定的绿胡子在各种生物中都有描述,但在一个系统中所有特性的直接证据很少。盘基网柄菌的 tgrB1-tgrC1 同源识别系统编码两种多态性膜蛋白,可保护细胞免受嵌合相关危险。在发育过程中,TgrC1 充当配体信号,TgrB1 充当其受体,但利他行为的证据是间接的。在这里,我们表明混合野生型和活化的 tgrB1 细胞会增加野生型孢子的产生,并将突变体降级为利他茎,而混合野生型和 tgrB1 缺陷细胞会增加突变孢子的产生和野生型茎的产生。 tgrB1 缺失的细胞只会欺骗携带相同 tgrC1 同种异型的伴侣。因此,TgrB1 激活会产生利他行为,而 TgrB1 失活会导致特定同种异型的欺骗,这支持了绿胡子概念,并深入了解了同种异型识别、利他行为和剥削之间的关系。
核酸疗法在沉默、表达或编辑基因方面具有巨大潜力。在这里,我们介绍了一种基于天然脂蛋白的纳米递送平台,该平台可防止小干扰 RNA (siRNA) 过早降解,确保其靶向和细胞内递送到骨髓中的造血干细胞和祖细胞 (HSPC)。在建立了一种在其核心中稳定地整合 siRNA 的载脂蛋白脂质纳米颗粒 (aNP) 原型后,我们建立了一个综合库,并彻底表征了单个 aNP 的物理化学性质。在对所有配方进行体外筛选后,我们选择了八种代表库多样性的 siRNA-aNP,并使用静脉给药方案确定了它们沉默小鼠免疫细胞亚群中溶酶体相关膜蛋白 1 (LAMP1) 的能力。我们的数据表明,使用不同的 aNP,我们可以在免疫细胞亚群及其骨髓祖细胞中实现功能性基因沉默。除了基因沉默之外,aNP 平台固有的与免疫细胞结合的能力使其具有向 HSPC 提供其他类型核酸疗法的巨大潜力。
细胞间粘附分子3(ICAM3)又称CD50,是细胞间粘附分子(ICAM)家族的成员。所有ICAM蛋白都是I型跨膜糖蛋白,含有2-9个免疫球蛋白样C2型结构域,并与淋巴细胞功能相关抗原-1(LFA-1)蛋白结合。ICAM3在所有白细胞中大量且组成性表达,可能是LFA-1在启动免疫反应中最重要的配体。近年来,越来越多的研究关注ICAM3,发现其与多种疾病的发病机制密切相关。本文概述了ICAM3的基因组定位、蛋白质结构和基本功能,并讨论了ICAM3在介导免疫细胞功能和其他疾病方面的研究进展。此外,我们描述了ICAM3对不同类型恶性癌症进展的调控作用及其相关信号通路。本工作评估了ICAM3作为诊断人类疾病和癌症的分子标记的可行性,可能为相关疾病和癌症的治疗提供新的靶点。作为典型的跨膜蛋白,我们期望寻找或合成特异性的小分子抑制剂用于治疗临床相关疾病。
