摘要 中心粒卫星是高阶组装体,由蛋白质 PCM1 支撑,以粒子形式围绕中心体运动,在基本细胞过程(尤其是纤毛生成和自噬)中发挥关键作用。尽管存在涉及磷酸化和泛素化的严格控制机制,但塑造这些结构的翻译后修饰的前景仍然难以捉摸。本文,我们报告了一种小分子坏死磺酰胺 (NSA),该小分子以结合和灭活坏死性凋亡细胞死亡的关键效应物 MLKL 而闻名,它独立于 MLKL 与中心粒卫星、纤毛生成和自噬相交叉。NSA 是一种强效氧化还原循环剂,可触发 PCM1 与选定伙伴的氧化和聚集,同时对中心粒卫星的整体分布影响最小。此外,NSA 介导的 ROS 生成会破坏纤毛生成并导致自噬标记物的积累,而 PCM1 缺失可部分缓解这一现象。总之,这些结果将 PCM1 确定为氧化还原传感蛋白,并为中心粒卫星与自噬之间的相互作用提供了新的见解。
天然产物是调节各种癌症自噬的重要工具。自噬是癌症治疗的关键,它影响着各种疾病的治疗和开发,包括癌症的治疗干预。根据自噬的框架,抑制或诱导自噬可以通过促进细胞死亡或细胞存活发挥治疗作用,而细胞死亡或细胞存活是癌症治疗所针对的两个主要事件。值得注意的是,天然产物在抗癌药物研发领域引起了人们的关注,因为它们生物友好且具有潜在的治疗效果。在这篇综述中,我们总结了有关可调节各种癌症自噬的天然产物的最新知识。这些发现将为开发更多天然化合物作为潜在的新型抗癌药物提供新的立足点,并将通过针对即将到来的癌症治疗的各个自噬阶段,更好地了解分子途径。
致谢:这项工作由欧洲地区发展基金(ERDF),通过2020 Centro区域运营计划以及竞争的2020年竞争 - 竞争力和国际化运营计划以及葡萄牙国家基金通过FCT,项目下的Project [s]:expl/bia -bia -bqm/1361/2021/2020/2020/2020/2020/2020/2020/2020/2020/2020/2020年。PAS GRAS项目已从欧盟的地平线欧洲获得资金。H. Gerardo(SFRH/BD/147316/2019和COVID/BD/153559/2024)和J. Teixeira(2020.01560.Ceecind)承认FCT,I.P。研究合同。
自噬是一种分解代谢过程,在整个进化过程中一直被保留,用于降解和回收细胞成分和受损细胞器。自噬在各种应激条件下被激活,例如营养缺乏、病毒感染和基因毒性应激,并与其他应激反应途径协同作用,以减轻氧化损伤并维持细胞稳态。其中一种途径是 Nrf2-Keap1-ARE 信号轴,它作为一种内在的抗氧化防御机制,与癌症化学预防、肿瘤进展和耐药性有关。最近的研究发现了自噬受损(由自噬受体蛋白 p62 介导)与 Nrf2 通路激活之间的联系。具体而言,p62 通过选择性自噬促进 Keap1 降解,导致 Nrf2 易位到细胞核中,在那里它转录激活下游抗氧化酶表达,从而保护细胞免受氧化应激。此外,Nrf2 还调控 p62 的转录,从而建立起 p62、Keap1 和 Nrf2 之间的正反馈回路,增强对细胞的保护作用。本文旨在全面综述 Nrf2 和自噬在癌症进展中的作用、Nrf2 通路与自噬之间的调控相互作用以及 Nrf2-自噬信号轴在癌症治疗中的潜在应用。
生成的人工智能(AI)技术和大型模型正在跨各种领域(例如图像,文本,语音和音乐)产生现实的输出。创建这些高级生成模型需要大量资源,尤其是大型和高质量的数据集。为了最大程度地减少培训费用,许多算法开发人员将模型本身创建的数据用作具有成本效益的培训解决方案。但是,并非所有的合成数据都有效地改善了模型的影响,因此需要在使用真实数据与合成数据的情况下保持战略平衡以优化结果。当前,实际和合成数据的先前控制的集成变得无法控制。在线合成数据的广泛和不受监管的传播导致数据集的污染
12西里西亚学院医学院,罗尔纳43、40-55,波兰卡托维斯;保罗·阿尔布雷希森(Paul Albrechtsen)研究所,加拿大MB,温尼伯曼尼托巴省曼尼托巴省;加拿大MB的曼尼托巴省曼尼托巴省雷神卫生科学学院麦克斯雷迪医学院人类解剖学和细胞科学系。
糖尿病血管疾病威胁着患者的生活质量和健康。自噬将细胞稳态保持和生存作为重要的细胞内自我修复机制。近年来,随着自噬研究的逐渐加深,越来越多的研究发现,诸如内皮细胞,平滑肌细胞和炎性细胞等血管细胞与各种自噬疾病密切相关。不同的自噬调节机制可以导致不同或相似的细胞结局,并且在此过程中存在复杂的串扰机制。因此,我们将总结有关自噬在糖尿病血管疾病中的作用的最新研究,重点关注线粒体,表观遗传学修饰,凋亡,炎症,炎症和自噬在糖尿病血管疾病发展中的复杂调节机制,以提供有效的糖尿病性毒性疾病。
自噬是真核生物中负责细胞内成分降解和营养物质再动员的一个保守系统。在几种植物的衰老花瓣中都观察到了自噬样过程。此外,在表现出乙烯依赖性衰老的花朵中,自噬相关基因的表达水平会显著增加,同时乙烯产量也会增加。然而,对于乙烯非依赖性花朵衰老中的自噬样过程的了解仍然有限。在本研究中,我们分离了自噬相关基因( LhATG5 、 LhATG6 、五个 LhATG8 同源物和 LhATG10 ),并分析了它们在表现出乙烯非依赖性衰老的东方杂交百合花被片衰老过程中的表达水平。随着花被衰老, LhATG5 、 LhATG6 和 LhATG8 的转录水平(但 LhATG8e 没有)会增加。此外,我们在百合花被片中观察到了用单丹磺酰尸胺 (MDC) 染料染色的细胞结构,该染料可染色酸化的囊泡区。在衰老花被片的叶肉细胞中观察到的 MDC 染色结构比在衰老前花被片中更常见。这些结果表明,在百合花被片衰老过程中会诱导自噬样过程。此外,随着花朵的衰老,花被叶肉中的氨基酸含量逐渐增加。这种氨基酸含量的增加伴随着蛋白质含量的降低和自噬相关基因转录水平的增加,这表明自噬样过程参与了由大量蛋白质降解引起的含氮成分的产生。总体而言,我们的数据表明,在百合花被片衰老过程中会诱导自噬样过程。进一步研究自噬样过程在乙烯独立花瓣衰老中的调控机制可能有助于提高花朵质量。
睡眠和昼夜节律功能障碍是阿尔茨海默氏病(AD)的常见临床特征。越来越多的证据表明,除了症状外,睡眠障碍还可以推动神经退行性的进展。蛋白质聚集是AD的病理标志;然而,睡眠如何影响蛋白质的分子途径仍然难以捉摸。在这里,我们证明了睡眠调制影响蛋白质的蛋白质和神经退行性的果蝇模型中的神经退行性的进展。我们表明睡眠剥夺增强了TAU聚集毒性,导致突触变性加剧。相比之下,通过调节的自噬液和泛素化的tau的清除率增强了神经元的毒性tau降低,导致神经元的毒性tau缩减减少,这表明质量的蛋白质处理和清除率导致了证明的突触完整性和功能。这些发现突出了睡眠与蛋白质稳态调节之间的复杂关系与增强睡眠治疗剂的神经保护潜力,以减慢或延迟神经变性的发展。
这是根据Creative Commons归因许可条款(https://creativecommons.org/licenses/4.0)的开放访问工作。请注意,重复使用,重新分配和复制尤其要求作者和来源被记住,并且单个图形可能需要特别法律规定。该许可受Beilstein档案术语和条件的约束:https://www.beilstein-archives.org/xiv/terms。这项工作的确定版本可以在https://doi.org/10.3762/bxiv.2024.58.v1