口腔癌是一种高度恶性疾病,其特征是复发,转移和预后不良。自噬是在压力条件下引起的分解代谢过程,已显示在口腔癌发展和治疗中起双重作用。最近的研究已经确定,口腔上皮细胞中的自噬激活通过抑制诸如雷帕霉素(MTOR)哺乳动物靶标(MTOR)和有丝裂原活化蛋白激酶(MAPK)等关键途径来抑制癌细胞的存活,同时激活腺苷一单磷酸蛋白磷酸蛋白磷酸蛋白基因酶(AMP)。诱导自噬会促进真核起始因子4E的降解,从而减少转移并增强化学疗法,放疗和免疫疗法的效率。此外,自噬诱导可以调节肿瘤免疫微环境并增强抗肿瘤免疫力。本综述全面总结了自噬和口腔癌之间的关系,重点介绍其机制和治疗潜力,并结合常规治疗方法。虽然有希望,但尚待阐明自噬诱导剂在口腔癌治疗中的确切机制和临床应用,为未来的研究提供了新的方向,以改善治疗结果并减少复发。
除了加深对细胞代谢的理解外,这些发现为潜在的治疗应用铺平了道路。通过特定药物或化合物调节自噬可能对治疗肥胖症和2型糖尿病等代谢疾病的治疗有影响,这与脂质和蛋白质产生和降解的失衡有关。此外,提高自噬功能具有通过保持细胞器质量并防止肌肉减少症和其他与年龄相关的疾病来减慢细胞衰老的潜力。
最大的未满足临床需求之一是修改阿尔茨海默氏病(AD)的疾病,这是最常见的神经退行性疾病,造成痴呆症病例1的50%。超过600万美国人与AD生活在一起,三分之一的老年人将死于AD或另一种形式的痴呆症1。目前,有四种批准的治疗与认知有关的症状的疗法 - 多奈哌齐,利瓦斯汀和甘氨酸是胆碱酯酶抑制剂,而美灵是谷氨酸调节剂。这些疗法无法解决潜在的疾病病理生理学,因此新的AD疗法是一个积极研究的领域。据估计,NIH在AD上的支出为31亿美元1,有几个基金会支持药物开发研究和患者护理。然而,阿尔茨海默氏病临床试验的失败率超过99%2,其中药物靶标主要是 - 淀粉样蛋白或tau蛋白。因此,研究人员正在寻找与AD中看到的斑块或缠结形成有关的细胞过程中的新药物。
自噬是真核生物中负责细胞内成分降解和营养物质再动员的一个保守系统。在几种植物的衰老花瓣中都观察到了自噬样过程。此外,在表现出乙烯依赖性衰老的花朵中,自噬相关基因的表达水平会显著增加,同时乙烯产量也会增加。然而,对于乙烯非依赖性花朵衰老中的自噬样过程的了解仍然有限。在本研究中,我们分离了自噬相关基因( LhATG5 、 LhATG6 、五个 LhATG8 同源物和 LhATG10 ),并分析了它们在表现出乙烯非依赖性衰老的东方杂交百合花被片衰老过程中的表达水平。随着花被衰老, LhATG5 、 LhATG6 和 LhATG8 的转录水平(但 LhATG8e 没有)会增加。此外,我们在百合花被片中观察到了用单丹磺酰尸胺 (MDC) 染料染色的细胞结构,该染料可染色酸化的囊泡区。在衰老花被片的叶肉细胞中观察到的 MDC 染色结构比在衰老前花被片中更常见。这些结果表明,在百合花被片衰老过程中会诱导自噬样过程。此外,随着花朵的衰老,花被叶肉中的氨基酸含量逐渐增加。这种氨基酸含量的增加伴随着蛋白质含量的降低和自噬相关基因转录水平的增加,这表明自噬样过程参与了由大量蛋白质降解引起的含氮成分的产生。总体而言,我们的数据表明,在百合花被片衰老过程中会诱导自噬样过程。进一步研究自噬样过程在乙烯独立花瓣衰老中的调控机制可能有助于提高花朵质量。
摘要 线粒体是一种在能量产生、细胞质蛋白质降解和细胞死亡中起重要作用的细胞器。线粒体自噬是一种自噬过程,可特异性地清除受损的线粒体并维持其体内平衡。新出现的证据表明,线粒体自噬参与许多生理过程,包括细胞体内平衡、细胞分化和神经保护。在这篇综述中,我们描述了哺乳动物和酵母中线粒体自噬的调控机制,并重点介绍了其在致癌作用和耐药性方面的最新进展。最后,我们专门用一节来描述线粒体自噬在抗癌治疗中的作用,这是一个新领域,提供了一种精确且有希望的策略。关键词:线粒体自噬、机制、致癌作用、耐药性、抗癌治疗
乳腺癌 (BC) 是一种全球范围内常见的恶性肿瘤。自噬在该疾病的所有阶段(包括发展、转移和发病)中都起着关键作用。因此,设想通过适当的策略靶向细胞自噬将成为一种新的乳腺癌预防和治疗策略。许多化疗药物可以刺激肿瘤细胞中的自噬。这导致人们对自噬在癌症治疗中的作用存在分歧,因为刺激和阻断自噬都可以提高抗癌药物的有效性。因此,在乳腺癌治疗期间是否刺激或抑制自噬的决定变得至关重要。了解 BC 中自噬的独特机制及其在药物治疗中的重要性可能有助于根据自噬的特定作用制定有针对性的治疗计划。本综述总结了乳腺癌自噬机制的最新研究,并为基于自噬的 BC 治疗技术提供了见解,为未来的 BC 治疗提供了新途径。
构建自噬通量分析模型,以分析我们之前报道的自噬通量变化(14)。简而言之,酸性溶酶体环境导致 pH 敏感的绿色荧光(GFP)减少,红色荧光(RFP)保持,自噬体同时显示 mRFP 和 GFP 信号,而溶酶体显示高 mRFP 信号和低 GFP 信号,这可用于指示自噬体与溶酶体的融合步骤。正如预期的那样,雷帕霉素(Rap,一种自噬诱导剂)处理导致 GCa 细胞中出现更多的红色荧光斑点,而 Am-F4a 和 Bafilomycin(Baf,一种自噬抑制剂)处理的细胞显示出高水平的黄色斑点,来自 GFP 和 RFP 的混合物(图 3b)。结果表明,Am-F4a 可能有效抑制自噬通量。为了检验 Am-F4a 对自噬的影响是否由溶酶体功能障碍引起,用 Lyso-
图 1 心脏靶向(Gal4 Τ inC Δ 4 )蛋白酶体 Pros β 5 基因的 KD 导致蛋白质组不稳定和线粒体数量减少。 (a) Pros β 5 siRNA 后心脏组织中 Pros β 5 基因的相对表达(与对照相比)。 (b, c) Pros β 5 RNAi(与对照相比)果蝇心脏组织中相对 (%) 26S 蛋白酶体活性 (b) 和 ROS 水平 (c)。 (d) Pros β 5 KD 后果蝇心脏组织中蛋白质组泛素化 (Ub) 和羰基化 (DNP) 的免疫印迹分析。 (e) CLSM 观察用 LysoTracker 染色的 Pros β 5 RNAi(与对照相比)果蝇心管(e1)、LysoTracker 定量(e2)和使用溶酶体标记物抗 Lamp1(e3)进行免疫印迹分析。(f) 所示基因型果蝇心脏组织中蛋白酶活性的相对(%)。(g) blw/ATP5A 免疫荧光染色后,CLSM 可视化所示果蝇品系心脏组织中的线粒体;细胞核用 DAPI 复染。(h) Pros β 5 KD 后,所示基因型分离心脏组织中所示线粒体基因的相对表达水平(与对照相比)。在 (a, h) 中,基因表达与相应对照作图;使用 RpL32/rp49 基因作为 RNA 输入参考。 (d)和(e3)中的 Gapdh 和 Actin 探测分别用作蛋白质输入参考。p 值采用非配对 t 检验计算。条形图,± SD(n ≥ 3);* p < 0.05;** p < 0.01
摘要 自噬通过多步骤的溶酶体降解途径维持营养循环和代谢稳态,并且已证明自噬可以作为肿瘤抑制因子或肿瘤促进因子,这取决于肿瘤微环境 (TME)。自噬在肿瘤发生中的双重作用导致两种相反的治疗策略,即抑制与促进。然而,由于肿瘤细胞的保护机制和缺乏特定的自噬调控策略,调节自噬已成为癌症治疗的主要考虑因素。纳米粒子 (NPs) 因其独特的性质而显示出克服这些局限性的巨大潜力。这里,我们总结了以自噬为靶向的 NPs 在有效治疗癌症方面的最新进展,并总结了相关临床和临床前研究的最新进展。对典型的自噬靶向纳米药物递送系统的总结旨在为有意探索该领域的研究人员提供参考并拓展思路。最后,我们对自噬调节在癌症治疗中的潜力进行了展望,并仔细强调了几个关键的客观问题。
摘要 中心粒卫星是高阶组装体,由蛋白质 PCM1 支撑,以粒子形式围绕中心体运动,在基本细胞过程(尤其是纤毛生成和自噬)中发挥关键作用。尽管存在涉及磷酸化和泛素化的严格控制机制,但塑造这些结构的翻译后修饰的前景仍然难以捉摸。本文,我们报告了一种小分子坏死磺酰胺 (NSA),该小分子以结合和灭活坏死性凋亡细胞死亡的关键效应物 MLKL 而闻名,它独立于 MLKL 与中心粒卫星、纤毛生成和自噬相交叉。NSA 是一种强效氧化还原循环剂,可触发 PCM1 与选定伙伴的氧化和聚集,同时对中心粒卫星的整体分布影响最小。此外,NSA 介导的 ROS 生成会破坏纤毛生成并导致自噬标记物的积累,而 PCM1 缺失可部分缓解这一现象。总之,这些结果将 PCM1 确定为氧化还原传感蛋白,并为中心粒卫星与自噬之间的相互作用提供了新的见解。