作为一种高度保守的细胞过程,自噬一直是广泛研究的重点,因为它在维持细胞稳态及其在心血管发病机理中的影响方面的关键作用。在多种动物模型中已经认识到肌肉功能的下降以及神经元系统以及对压力的敏感性的提高。心血管结构和细胞功能障碍的自噬缺陷与哺乳动物和果蝇中心脏的生理和病理状况有关。在这篇综述中,我们系统地分析了水果层心脏中与自噬相关的途径,并旨在为为患者开发潜在治疗以及有效的农业应用策略提供全面的理解。该分析阐明了果蝇在生理和病理条件下心血管功能中自噬的分子机制,从而对心血管疾病的发展提供了显着的见解。关键自噬相关蛋白的丧失,包括跨膜蛋白ATG9及其伴侣ATG2或ATG18,以及DMSETRIN,导致心脏肥大和果蝇的结构异常,类似于年龄依赖于年龄的心脏功能功能。自噬相关(ATG)基因家族,细胞或核骨骼层粘连蛋白以及雷帕霉素(MTOR)信号途径的机械或哺乳动物靶标在果蝇中的心脏功能中具有严重影响的果蝇功能,具有自噬激活,表现为抑制心脏层板层层板层层。本评论评估了心脏自噬的功能意义,MTORC1/C2复合物以及ATG2-AMPK/SIRT1/PGC-1α途径的轴,在哺乳动物和果实中的心脏中至关重要,导致心脏发展,成长,成熟,以及心脏体内稳态的维持。几种干预措施的有益作用增强了心脏功能,包括运动和冷应激,可以影响哺乳动物和果蝇中丝氨酸/苏氨酸蛋白激酶信号传导的自噬依赖性TOR活性。练习表现出可确定的自噬并在过度时会抑制自噬,从而突出了自噬在心脏健康中的双重作用。
哺乳动物雷帕霉素靶标 (mTOR) 抑制剂依维莫司、替西罗莫司和雷帕霉素具有广泛的临床应用;然而,与其他化疗药物一样,耐药性的产生限制了它们的有效性。一种假定的耐药机制是促进自噬,这是抑制 mTOR 信号通路的直接结果。自噬主要被认为是一种细胞保护性生存机制,通过该机制,细胞质成分被回收利用以产生能量和代谢中间体。依维莫司和替西罗莫司诱导的自噬似乎发挥了很大的保护作用,而雷帕霉素似乎以细胞毒性作用为主。在这篇综述中,我们概述了不同肿瘤模型中响应 mTOR 抑制剂而诱导的自噬,以确定自噬靶向是否可以作为与 mTOR 抑制相关的辅助疗法具有临床应用。
摘要:噬血细胞性淋巴组织细胞增生症 (HLH) 是一种罕见的、危及生命的疾病,其特征是免疫反应不受控制且无效时出现过度炎症。尽管诊断和治疗有了很大的进步,但它仍然是临床管理的挑战,如果没有积极的治疗方法,预后不良。本文献综述重点关注儿童继发性 HLH,其病因和治疗方法各不相同。它总结了流行病学、病理生理学、诊断、治疗和预后的最新证据,并详细描述和比较了继发性 HLH 的主要亚型。最后,它解决了未解决的问题,重点是诊断和新的治疗见解。
摘要越来越多的研究将大噬菌/自噬的功能障碍与阿尔茨海默氏病(AD)等疾病的发病机理联系起来。鉴于自噬对体内平衡的全球重要性,其功能障碍如何导致特定的神经系统变化令人困惑。为了进一步研究这一点,我们使用ATG7 IKO比较了成年小鼠自噬的全局失活,并与AD相关的致病性变化在突触蛋白的自噬处理中的影响。孤立的前脑突触体,而不是来自ATG7 IKO小鼠的总匀浆,表现出突触蛋白的积累,这表明突触可能是蛋白质稳态破坏的脆弱部位。此外,自噬的停用导致随着时间的推移会导致认知表现受损,而大型运动技能仍然完好无损。尽管自噬停用了6.5周,但在没有细胞死亡或突触丧失的情况下,认知的变化是。在AD的症状应用PSEN1 PSEN1双转基因小鼠模型中,我们发现自噬体成熟的障碍与从这些小鼠分离的自噬体中离散的突触蛋白的存在减少,从而导致这些蛋白质中的一种在洗涤剂无效的蛋白质蛋白质中积累。该蛋白质,SLC17A7/VGLUT,也积聚在ATG7 IKO小鼠突触体中。综上所述,我们得出结论,突触自噬在主要促进蛋白稳态中起作用,并且在降低自噬会中断正常的认知功能的同时,运动的保存表明并非所有电路都受到类似的影响。我们的数据表明,AD中自噬活性的破坏可能与这种成人发作神经退行性疾病的认知障碍有关。缩写:2Drawm:2天径向臂水迷宫;广告:阿尔茨海默氏病; Aβ:淀粉样蛋白β; AIF1/IBA1:同种异体移植炎症因子1;应用:淀粉样蛋白β前体蛋白; ATG7:自噬相关7; AV:自噬液泡; CCV:货物捕获价值; CTRL:控制; DLG4/PSD-95:光盘大型Maguk支架蛋白4; GFAP:神经胶质原纤维酸性蛋白; grin2b/nmdar2b:谷氨酸离子型热带受体NMDA型亚基2B;有限公司:长期抑郁症; MAP1LC3/LC3:微管相关蛋白1轻型链3; m/o:几个月大; PNS:核后上清液; PSEN1/PS1:Presenilin 1; SHB:蔗糖均质化缓冲液; SLC32A1/VGAT:Solute Carrier家族32成员1; SLC17A7/VGLUT1:Solute Carrier家族17成员7; SNAP25:突触体相关蛋白25; SQSTM1/p62:隔离1; Syn1:Synapsin I; SYP:突触素; SYT1:Synaptotagmin 1;塔姆:他莫昔芬; VAMP2:囊泡相关的膜蛋白2; VCL:Vinculin; WKS:几周。
糖尿病血管疾病威胁着患者的生活质量和健康。自噬将细胞稳态保持和生存作为重要的细胞内自我修复机制。近年来,随着自噬研究的逐渐加深,越来越多的研究发现,诸如内皮细胞,平滑肌细胞和炎性细胞等血管细胞与各种自噬疾病密切相关。不同的自噬调节机制可以导致不同或相似的细胞结局,并且在此过程中存在复杂的串扰机制。因此,我们将总结有关自噬在糖尿病血管疾病中的作用的最新研究,重点关注线粒体,表观遗传学修饰,凋亡,炎症,炎症和自噬在糖尿病血管疾病发展中的复杂调节机制,以提供有效的糖尿病性毒性疾病。
摘要:冠状动脉微血管功能障碍 (CMD) 是指冠状动脉微循环的一组结构性和/或功能性障碍,可导致冠状动脉血流受损并最终导致心肌缺血。随着对病理生理机制的认识不断加深和评估工具的先进发展,CMD 已成为多种心血管疾病 (CVD) 的主要病因,包括阻塞性和非阻塞性冠状动脉疾病、糖尿病性心肌病和射血分数保留的心力衰竭。值得注意的是,内皮在调节冠状动脉微血管和心脏功能方面发挥着重要作用。重要的是,内皮自噬激活不足或不受控制会促进各种 CVD 中 CMD 的发病机制。本文,我们回顾了对冠状动脉内皮细胞自噬病理生理机制的理解进展,并讨论了它们在 CMD 和 CVD 中的潜在作用。
标题页机器人手臂控制系统基于脑肌肉混合信号Li-Wei Cheng出生于1989年,目前是北京邮政与电信大学的现代邮政自动化学院的博士候选人。他于2017年获得了北京邮政与电信大学的机械工程硕士学位。他的研究兴趣包括机器学习,EEG信号处理,BCI和机器人技术。电子邮件:clw1016@sina.com Duan-Lil Li出生于1974年,目前是北京邮政与电信大学的教授。 她于2003年获得了中国北京大学的博士学位。 她的研究兴趣包括机制和机器人技术。 电子邮件:liduanling@163.com锣jing Yu,出生于1966年,目前是中国北京航空航天测量和控制技术公司的教授。 他于1991年获得了中国北京大学的导航指导和控制硕士学位。。 他的研究兴趣包括测量和控制技术,BCI,智能机器人,预后和健康管理。 电子邮件:casicygj@163.com Zhong-hai Zhang出生于1971年,目前是中国北京航空航天测量和控制技术公司的教授。 2014年,他获得了北京邮政与电信大学的机械工程博士学位。。 他的研究兴趣包括机制和机器人技术。 电子邮件:zhzhonghai@sina.com shu-yue yu,出生于1993年,目前是中国北京航空航天测量与控制技术公司有限公司的工程师。电子邮件:clw1016@sina.com Duan-Lil Li出生于1974年,目前是北京邮政与电信大学的教授。她于2003年获得了中国北京大学的博士学位。她的研究兴趣包括机制和机器人技术。电子邮件:liduanling@163.com锣jing Yu,出生于1966年,目前是中国北京航空航天测量和控制技术公司的教授。 他于1991年获得了中国北京大学的导航指导和控制硕士学位。。 他的研究兴趣包括测量和控制技术,BCI,智能机器人,预后和健康管理。 电子邮件:casicygj@163.com Zhong-hai Zhang出生于1971年,目前是中国北京航空航天测量和控制技术公司的教授。 2014年,他获得了北京邮政与电信大学的机械工程博士学位。。 他的研究兴趣包括机制和机器人技术。 电子邮件:zhzhonghai@sina.com shu-yue yu,出生于1993年,目前是中国北京航空航天测量与控制技术公司有限公司的工程师。电子邮件:liduanling@163.com锣jing Yu,出生于1966年,目前是中国北京航空航天测量和控制技术公司的教授。他于1991年获得了中国北京大学的导航指导和控制硕士学位。他的研究兴趣包括测量和控制技术,BCI,智能机器人,预后和健康管理。电子邮件:casicygj@163.com Zhong-hai Zhang出生于1971年,目前是中国北京航空航天测量和控制技术公司的教授。 2014年,他获得了北京邮政与电信大学的机械工程博士学位。。 他的研究兴趣包括机制和机器人技术。 电子邮件:zhzhonghai@sina.com shu-yue yu,出生于1993年,目前是中国北京航空航天测量与控制技术公司有限公司的工程师。电子邮件:casicygj@163.com Zhong-hai Zhang出生于1971年,目前是中国北京航空航天测量和控制技术公司的教授。2014年,他获得了北京邮政与电信大学的机械工程博士学位。他的研究兴趣包括机制和机器人技术。电子邮件:zhzhonghai@sina.com shu-yue yu,出生于1993年,目前是中国北京航空航天测量与控制技术公司有限公司的工程师。她于2019年获得了北京邮政与电信大学的控制科学和工程硕士学位。她的研究兴趣包括机器人技术和BCI。电子邮件:ysy_ivy@163.com通讯作者:li-wei cheng电子邮件:clw1016@sina.com
线粒体自噬是细胞选择性清除功能失调的线粒体的过程,控制着线粒体的数量和质量。线粒体自噬失调可能导致受损线粒体的积累,在肿瘤的发生和发展中起着重要作用。线粒体自噬包括由PINK1 / Parkin介导的泛素依赖性途径和由线粒体自噬受体(包括NIX,BNIP3和FUNDC1)介导的非泛素依赖性途径。细胞线粒体自噬广泛参与多种细胞过程,包括代谢重编程,抗肿瘤免疫,铁死亡以及肿瘤细胞与肿瘤微环境之间的相互作用。并且细胞线粒体自噬还调节肿瘤的增殖和转移,干细胞,化学抗性,对靶向治疗和放射治疗的抵抗力。在这篇综述中,我们总结了线粒体自噬的潜在分子机制,并讨论了线粒体自噬在不同肿瘤环境中的复杂作用,表明它是线粒体自噬相关抗肿瘤治疗的一个有希望的靶点。
1. 沙特阿拉伯费萨尔国王大学理学院生物科学系,Al-Ahsa,31982。2. 印度泰米尔纳德邦钦奈,萨维塔大学萨维塔医学与技术科学研究所,萨维塔牙科学院与医院,分子医学与诊断学中心 (COMManD),生物化学系。3. 印度钦奈,Maduravoyal,Alapakkam Main Road,MAHER,Meenakshi Ammal 牙科学院与医院,口腔病理学与口腔微生物学系。4. 印度钦奈,Maduravoyal,Alapakkam Main Road,MAHER,Meenakshi Ammal 牙科学院与医院,口腔颌面外科系。5. 埃及开罗大学理学院植物学与微生物学系,开罗,12613。 6. 埃及艾斯乌特大学理学院动物学系,艾斯乌特 71515。7. 埃及艾斯乌特大学理学院植物学与微生物学系,艾斯乌特 71516。